Review for Midterm 1

Midterm 1 on Feb. 26; Extra office hour: Feb. 21, 2:30-5:30pm

On inverse functions (Chapter 6)

Basic properties about inverse functions: One-one function, symmetric in graphs, relation between derivatives, etc.

Exercise 1: If $f(x) = \sqrt{x^3 + x^2 + x + 1}$, find $(f^{-1})'(2) = ...$

Logarithmic and exponential functions: The way we introduce these concepts: Natural Logarithmic function: $y = \ln x = \int_1^x \frac{1}{t} dt$, \Rightarrow its inverse natural exponential function: $y = e^x$, \Rightarrow general exponential function: $y = a^x$ (what is the meaning of $2^{\sqrt{2}}$?), \Rightarrow general logarithmic function: $y = log_a x$.

Exercise 2:

- (a) Find the derivative of $f(x) = \ln \frac{1}{1+x^2}$ (b). What is the derivative of $y = x^{x+1}$? What is the domain of the function?
- (c). Find

$$\int_{e}^{e^3} \frac{\ln x}{x} dx =$$

 $sin^{-1}x$ and $cos^{-1}x$: Domain and range; derivative.

Exercise 3:

- (a). Find $\sin[\cos^{-1}\frac{1}{2}]$ and $\tan[\sin^{-1}\frac{1}{3}]$.
- (b). Show that

$$\frac{d(arcsinx)}{dx} + \frac{d(arccosx)}{dx} = 0.$$

(c). Show that

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}.$$

(d). Can you find:

$$tan^{-1}x + ctan^{-1}x = ?$$

<u>L'Hospital's rule</u>: **ALWAYS CHECK CONDITIONS BEFORE YOU USE THE RULE!**

Exercise 4:

(a) Find what is wrong:

$$\lim_{x \to 1} \frac{x^2}{x+1} = \lim_{x \to 1} \frac{2x}{1} = 2.$$

(b). Find

$$\lim_{x \to +\infty} \frac{(\ln x)^3}{x}.$$

(c). Find

$$\lim_{x \to +0} \frac{(\ln x)^3}{x^{10}}.$$

(d). Find

$$\lim_{x \to +0} (1 + \frac{1}{x})^{4x}.$$

(e). Find

$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 1} + 10}{\sqrt[3]{8x^3 - 1000}} = .$$

Techniques of integration (Chapter 7).

Integration by parts 7.1: Choose your u and v. Sometimes, you need to integrate by parts twice.

Exercise 5: Find the integrals of the following

$$(a)\int x(\ln x)^2 dx, \quad (b) \quad \int xe^{2x} dx, \quad (c)\int x\sin x dx, \quad (d)\int e^x\sin x dx.$$

Trigonometric integrals: Three types of integrals.

Exercise 6: Find the integrals of the following

(a)
$$\int \sin^3 x dx$$
, (b) $\int \cos^2 x dx$, (c) $\int \cos 2x \sin x dx$.

<u>Trigonometric substitution</u>: $x = a \sin \theta$, $x = a \tan \theta$, etc. Remember to choose θ in a convenient range (for example: $\theta \in [-\pi/2, \pi/2]$.

Exercise 7: Find the integrals of the following

(a)
$$\int \frac{x^3}{\sqrt{1-x^2}} dx.$$

(b)
$$\int \frac{x^2}{\sqrt{1-x^2}} dx.$$

$$\int \frac{x+1}{1+x^2} dx.$$

<u>Partial fractions</u>: First, simplify the integrand (improper fraction \rightarrow proper fraction). Then factorize the denominator.

Exercise 8: Find the integrals of the following

(a).

$$\int \frac{x+2}{4x^2+3x-1} dx.$$

(b).
$$\int \frac{1-2e^x}{1-e^{2x}} dx.$$

Strategy Sometimes you need to combine some techniques together, like in exercise $\overline{4}$ (b). One more example

Exercise 9: Find

$$\int e^{\sqrt{x}+1} dx.$$

<u>Improper integrals</u> Meanings, computations, comparison for convergence and divergence checking.

Exercise 10: Evaluate, if possible the improper integral

$$\int_1^3 \frac{1}{|x-2|^p} dx,$$

where p is a positive constant.

Comments and question to: mzhu@math.ou.edu

@Copyright by Meijun Zhu