Review for Midterm 1— Oct. 3rd, 2023

Office hour: September 28, 10:20am-12:20pm

I. Partial derivative

We start to learn functions of several variables.
Definition:
How to find Domain, what are Level curves (and Level surfaces), etc.
Limit and Continuity:
When a rational polynomial has NO limit: Find two difference paths.
How to find limit? Definition is TOO HARD. But if the function is continuous at the point, it is easy!

Try these examples
Exercise 1: If the limit exists, find it. If it does not exist, give the reason.
1).

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{10}+y \ln \left(x^{2}+1\right)}{x^{3}+y^{6}+1} .
$$

2)

$$
\lim _{(x, y) \rightarrow(0,0)} \ln \left(x^{2}+y^{3}+2\right) .
$$

3)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y}{x^{8}+y^{2}}
$$

4) (Hard one)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y^{2}}{x^{4}+y^{4}} .
$$

5)(Hardest one)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{6} y^{4}}{x^{8}+y^{8}}
$$

Partial derivative:
How to compute the partial derivatives (include how to check a function solving a partial differential equation): All those old tricks from previous Calculus courses are still useful. Key part: Chain rule.

Exercise 2: Check that $u(x, t)=f(x+a t)$ solves the following equation:

$$
u_{t t}-a^{2} u_{x x}=0
$$

Applications of derivatives: Tangent plane and normal line. The general way to find the formula using level surface: Where does the normal direction

$$
\left(F_{x}\left(x_{0}, y_{0}, z_{0}\right), F_{y}\left(x_{0}, y_{0}, z_{0}\right), F_{z}\left(x_{0}, y_{0}, z_{0}\right)\right)
$$

come from?
Exercise 3: Assume that $g(x, y)=f\left(x^{2}+\sin y\right)$ where $f(t)$ is a differentiable function of t. If $f^{\prime}(0)=2$,
(a). Find $\partial g / \partial y(0,0)=$?.
(b). Find the tangent plane of $g(x, y)$ at point $(0,0)$.

Exercise 4:

Find the tangent plane and normal line to the sphere $x^{2}+(y-1)^{2}+z^{2}=2$ at point ($1,1,1$).

Maximum and Minimum

How to find Critical Points: Solve the system of equations.
How to distinguish the local MAX and MIN from critical points: compute the determinant and $f_{x x}$.

How to find GLOBAL extreme value: 1). fine extreme value insider the region, 2). find with constraint using Lagrange multipliers.

Exercise 5. Typical example: find the maximum and minimum value of $f(x, y)=$ $x y$ in the closed disk: $\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.

Copyright by Meijun Zhu

