Review for second midterm exam

Second midterm, Nov. 2, 9:00am-10:15am.
Office hour: Nov. 1, 9:00am-10:30am; 11:30 am -12:30 pm

I. Double integrals

We start with the definition of double integral (the VOLUME).
How to compute it?
Integrals on rectangles: The link between a double integral and ITERATED ingeral is the deep FUBINI's theorem.

Exercise 1: Evaluate

$$
\iint_{R} x y e^{x+y^{2}} d A
$$

where $R=[0,1] \times[0,1]$.
Integrals on general regions: Basically, we extend $f(x, y)$ to $F(x, y)$ over a bigger rectangle. TWO TYPES regions.

First one:

$$
\left.D=\{(x, y): a \leq x \leq b, \quad \text { (for fixed } \mathrm{x}), \quad g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

The second

$$
\left.D=\{(x, y): c \leq y \leq d, \quad \text { for fixed } y), \quad h_{1}(y) \leq x \leq h_{2}(y)\right\}
$$

Change the order of iterated integrals
Exercise 2: Evaluate

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{x^{3}+1} d x d y
$$

Polar coordinate

Exercise 3: Find the area of the region D, which is enclosed by the circle $x^{2}+y^{2}=4 y$ and is above the curves $y^{2}=3 x^{2}$ in the upper half place.

II. Triple integrals

The definition of triple integral (the VOLUME of a FOUR dimensional solid).
How to compute it?
Integrals on boxes $B=[a, b] \times[c, d] \times[r, s]$: FUBINI's theorem is used to reduce it to a DOUBLE ingeral first.

Integrals on a general region E : Three TYPES regions (and many many cases!).
One example:

$$
E=\left\{(x, y, z):(x, y) \in D, \quad(\text { for fixed } \quad(\mathrm{x}, \mathrm{y})), \quad \phi_{1}(x, y) \leq z \leq \phi_{2}(x)\right\}
$$

Then, remember to describe the region $D!!!$
Another example

$$
E=\left\{(x, y, z):(x, z) \in D, \quad(\text { for fixed } \quad(\mathrm{x}, \mathrm{z})), \quad \phi_{1}(x, z) \leq y \leq \phi_{2}(x, z)\right\} .
$$

AND DO NOT forget to describe the region $D!!!$

Exercise 4: Using triple integral to find the volume of the solid bounded by the cylinder $x=y^{2}$, and the planes $z=0$ and $x+z=1$.

IV. Transformation

$$
T: \quad\left\{\begin{array}{l}
x=x(u, v) \\
y=y(u, v)
\end{array}\right.
$$

is a transformation from region S to R, then

$$
\iint_{R} f(x, y) d A=\iint_{S} f[x(u, v), y(u, v)]\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A .
$$

So, we have the formula of double integrals in polar coordinates, etc.
Exercise 5: Evaluate

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y
$$

Exercise 6: Evaluate

$$
\iint_{R} \cos \left(\frac{y-x}{y+x}\right) d A
$$

where R is the trapezoidal region with vertices $(1,0),(2,0),(0,2)$ and $(0,1)$.

Copyright by Meijun Zhu

