Review for Midterm 2

Midterm 2, March 14

Linear ODEs

Definition: We start with some terminologies: Linear differential equations, superposition, general solutions, homogeneous and nonhomogeneous equations, particular solutions, etc

Exercise 1: If y_{1} and y_{2} solve equation

$$
y^{\prime \prime}+e^{x} y^{\prime}+y \sin x^{2}=0,
$$

check $2 y_{1}+3 y_{2}$ is also a solution.
How to solve a homogeneous equation of constant coefficients:

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{1} y^{\prime}+a_{0} y=0 .
$$

Three types.
Consider the Characteristic equation.
Type 1: Distinct roots R_{1}, \ldots, R_{n}
Type 2: Repeat roots (roots with multiplicity greater than 1)
Exercise 2: Find and check the general solution to

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0 .
$$

Type 3: complex roots.
Exercise 3: Find the general solutions, if the characteristic equation of a ODE is
(a).

$$
(r-1)^{3}\left(r^{2}-4 r+5\right)=0,
$$

or
(b).

$$
(r-1)^{3}\left(r^{2}-2 r+2\right)^{2}=0,
$$

How to solve a nonhomogeneous equation of constant coefficients:

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{1} y^{\prime}+a_{0} y=f(x) .
$$

Undetermined coefficient method:
Exercise 4: Find the general solution to

$$
y^{\prime \prime}+4 y^{\prime}+5 y=x+e^{2 x} \sin x
$$

Variation of parameter method: the formula:

$$
\left.y(x)=-y_{1} \int \frac{y_{2} f(x)}{W\left(y_{1}, y_{2}\right)} d x+y_{2} \int \frac{y_{1} f(x)}{W\left(y_{1}, y_{2}\right.}\right) d x .
$$

Exercise 5: Find the general solution to

$$
y^{\prime \prime}+y=\frac{1}{\cos x} .
$$

Variation of parameter method: the idea: ${ }^{* * *}$
Exercise 6: Check $y_{1}(x)=x^{3}$ is a solution to

$$
x^{2} y^{\prime \prime}+x y^{\prime}-9 y=0
$$

for $x>0$. Find the second solution that is linearly independent to $y_{1}(x)$.

Copyright by Meijun Zhu

