Review after Midterm Exam 2

Exam day: May 7. 1:30-3:30pm
Office hour: May 2, 11:30 am-1:15 pm
Eigenvalue problems
Exercise 1: Find all positive eigenvalues of

$$
-y^{\prime \prime}=\lambda y, \quad y^{\prime}(0)=y^{\prime}(\pi)=0 .
$$

Algebraic methods

Laplace transform: Definition and basic formulas for $e^{a t}, \cos k t, \sin k t, t^{a}$, translation and partial fraction, integral, differentiation and convolution

Exercise 2: Find: $\mathcal{L}^{-1}\{F(s)\}$ if
(a). $F(s)=\frac{1}{s(s-3)}$;
(b). $F(s)=\frac{1}{s^{2}(s-3)}$;
(c). $F(s)=\frac{s-1}{(s+1)^{3}}+\frac{1}{s\left(s^{2}+1\right)}$.
(d). $F(s)=\frac{s}{\left(s^{2}+1\right)^{2}}$.

Using Laplace transform to solve initial value problem: D.E to A.E., solving A.E., then find $\mathcal{L}^{-1}\{F(s)\}$.

Exercise 3: Solve:
(a). $x^{\prime \prime}+4 x=\sin 2 t, \quad x(0)=x^{\prime}(0)=0$.
(b). $x^{\prime}=4 x+2 y, y^{\prime}=3 x-y ; x(0)=3, y(0)=-2$;
(c). $t x^{\prime \prime}-2 x^{\prime}+t x=0, x(0)=0$.
(d). $t x^{\prime \prime}-2 x^{\prime}+t x=0, x(0)=1$.
(f) ${ }^{*}$ Can you find the general solution to $t x^{\prime \prime}-2 x^{\prime}+t x=0$?

Copyright by Meijun Zhu

