Review after Midterm Exam 2

Exam day: May 7. 1:30—3:30pm Office hour: May 2, 11:30 am-1:15 pm

Eigenvalue problems

Exercise 1: Find all positive eigenvalues of

$$-y'' = \lambda y, \quad y'(0) = y'(\pi) = 0.$$

Algebraic methods

Laplace transform: Definition and basic formulas for e^{at} , $\cos kt$, $\sin kt$, t^a , translation and partial fraction, integral, differentiation and convolution

Exercise 2: Find: $\mathcal{L}^{-1}{F(s)}$ if (a). $F(s) = \frac{1}{s(s-3)}$; (b). $F(s) = \frac{1}{s^2(s-3)}$; (c). $F(s) = \frac{s-1}{(s+1)^3} + \frac{1}{s(s^2+1)}$. (d). $F(s) = \frac{s}{(s^2+1)^2}$.

Using Laplace transform to solve initial value problem: D.E to A.E., solving A.E., then find $\mathcal{L}^{-1}{F(s)}$.

Exercise 3: Solve:

(a). $x'' + 4x = \sin 2t$, x(0) = x'(0) = 0. (b). x' = 4x + 2y, y' = 3x - y; x(0) = 3, y(0) = -2; (c). tx'' - 2x' + tx = 0, x(0) = 0. (d). tx'' - 2x' + tx = 0, x(0) = 1. (f)* Can you find the general solution to tx'' - 2x' + tx = 0? Copyright by Meijun Zhu