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ABSTRACT. We show that a particular free-by-cyclic group G has
CAT(0) dimension equal to 2, but CAT(-1) dimension equal to 3.
Starting from a fixed presentation 2-complex we define a family
of non-positively curved piecewise Euclidean “model” spaces for
G, and show that whenever the group acts properly by isometries
on any proper 2-dimensional CAT(0) space X there exists a G-
equivariant map from the universal cover of one of the model spaces
to X which is locally isometric off the 0-skeleton and injective on
vertex links.

From this we deduce bounds on the relative translation lengths
of various elements of G acting on any such space X by first study-
ing the geometry of the model spaces. By taking HNN-extensions
of G we then produce an infinite family of 2-dimensional hyper-
bolic groups which do not act properly by isometries on any proper
CAT(0) metric space of dimension 2. This family includes a free-
by-cyclic group with free kernel of rank 6.
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1. INTRODUCTION

One of the foundational problems in the theory of hyperbolic groups
is to determine the relationship between coarse and continuous notions
of negative curvature. Specifically, one is interested in the relationship
between coarse notions such as Gromov’s d-hyperbolicity, and the more
continuous notions due to Alexandrov and Toponogov of CAT(0) and
CAT(-1) metric spaces. It is known that if a group acts properly and
cocompactly by isometries on a CAT(-1) metric space (or on a CAT(0)
metric space which contains no isometrically embedded flat planes [9])
then the group is hyperbolic in the sense of Gromov. It is still an
open problem as to whether all hyperbolic groups act properly and
cocompactly by isometries on CAT(0) metric spaces.

The main results of this paper show that if one is trying to find a
proper CAT(0) or CAT(-1) metric space on which a given torsion free
hyperbolic group acts properly and cocompactly by isometries, then
the dimension of the space may have to be be strictly greater than the
geometric dimension (usual topological dimension) of the group. We
find that this is so in the case of hyperbolic free-by-cyclic groups. The
basic example upon which everything else is built is an F3 x Z group
which has CAT(0) dimension equal to 2, but has CAT(-1) dimension
equal to 3. Furthermore, there is a one-parameter family of CAT(0)
piecewise Euclidean 2-complexes associated to this group with the fol-
lowing property. Every 2-dimensional proper CAT(0) space on which
this group acts properly isometrically contains a (possibly immersed)
scaled copy of one of these 2-complexes. Moreover, this map is a local
isometric embedding off the set of vertices.

Theorem 1. The group G with presentation {a,b|aba* = b*) is of
the form F3 x Z, is hyperbolic, and admits a compact locally CAT(-1)
3-dimensional K(G,1).

Furthermore, there is a one-parameter family {K;}; of compact, lo-
cally CAT(0), piecewise Euclidean 2-complexes with the following prop-
erties:

(1) Each Ky is a K(G,1). In particular, G has CAT(0) dimension
equal to 2.

(2) Let X be a proper CAT(0) space of dimension 2 on which G acts
properly discontinuously by isometries. Then, for some t € R,
there is a G-equivariant map

Q' K, — X
which 1is locally injective and, up to a constant scaling of the

metric on Ky, locally isometric on the complement of the 0-
skeleton of K.
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In particular, G does not act properly isometrically on a proper CAT(-
1) space of dimension 2, and so G has CAT(-1) dimension equal to
3.

Property (2) in Theorem 1 can be viewed as a first, weak, hyper-
bolic analogue of the Flat Torus Theorem which states that whenever
the group Z" acts properly semi-simply on a CAT(0) space X there
exists an invariant isometrically embedded Euclidean space E™ in X
(on which Z™ acts with quotient an n-torus). The analogy is “weak”
in two senses. Firstly, we do not get isometrically embedded copies
of the universal covers of the K;. However we do get enough control
to analyze translation lengths of many elements of G, which will be
a key element in the proof of Theorem 2 below. Secondly, we impose
the dimension restriction on the CAT(0) space X. On the other hand,
we do not suppose that the actions are semi-simple. This is similar
to the 2-dimensional Torus Theorem of Fijuwara, Shioya and Yama-
gata [14] which includes the dimension restriction, but does not require
semi-simplicity. In fact we shall depend upon Proposition 4.4 of [14] in
order to find a minimum for combined displacement function without
recourse to any cocompactness hypothesis.

Finally we note that the form of Theorem 1 (2) is similar to that
of [13] Theorem 1 which pertains to the classification of 2-dimensional
CAT(0) structures for the 4-string braid group By modulo it centre.
In view of the observations made in [13] it is unlikely that one can
improve the quality of the map ¢ of Theorem 1 (2): there are certainly
cases where the map is not an isometric embedding and probably some
where the map ¢ is not even globally injective.

The Flat Torus Theorem has been very useful in proving that certain
groups are not CAT(0) [15]. The groups typically contain a Z?* sub-
group, together with a lot of conjugation relations, so that any puta-
tive, non-positively curved K (m, 1) for them will contain an impossibly
shaped flat torus. In the present case the K; complexes play the role of
flat 2-tori. Although they are not necessarily isometrically embedded,
we know enough about the maps ¢ in order to determine translation
lengths of various elements of G on the ambient CAT(0) space. This
information is sufficient in order to construct groups which will not be
CAT(0) in dimension 2, because extra conjugation relations will some-
how contradict the translation length computations. For example, we
have the following theorem.

Theorem 2. There is an infinite family of hyperbolic groups of geo-
metric dimension 2, which do not act properly by isometries on any
proper CAT(0) metric space of dimension 2.

This family includes infinitely many free-by-cyclic groups, one of
which is an Fg X Z.
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Remark 3. This theorem offers the first conclusive proof that in tack-
ling the question of whether all (torsion free) hyperbolic groups are
CAT(0), one is obliged to look for CAT(0) structures above the geo-
metric dimension of the group. This is the case even within the class
of hyperbolic free-by-cyclic groups.

It was already known that it is easier to find CAT(0) structures for
hyperbolic groups if one looks above the geometric dimension. The
work of Wise [21] and of Brady-McCammond [7] all find high dimen-
sional CAT(0) piecewise Euclidean cubical structures for various classes
of hyperbolic groups (certain small-cancellation groups, and certain
families of ample twisted face pairing 3-manifold groups). The results
of this paper imply that it is not only easier, but that in some cases it
is also necessary to look above the geometric dimension in the search
for CAT(0) structures.

By the work of Bridson [10] and of Brady-Crisp [5] (see also [12, 14])
one knows that the minimal dimension of a CAT(0) structure for a
CAT(0) group, may be strictly greater than its geometric dimension.
However, all these papers used some version of the flat torus theorem,
and made heavy use of periodic flats in 2-dimensional CAT(0) spaces.
The key idea in the current paper is to find a very special hyperbolic
group, and corresponding 2-complexes, which play a role somewhat
analogous to that of the Z? subgroups and flat 2-tori.

We wish to thank Luisa Paoluzzi, Robert Roussarie, Sylvain Cro-
visier and Christian Bonatti for (collectively) bringing to our attention
the full variety of 2-dimensional structures K;, and for several helpful
observations and simplifications of the arguments of Section 3.3. We
also wish to thank Lee Mosher and Leonid Potyagailo for raising the
questions mentioned in Section 3.1.

2. DEFINITIONS AND BACKGROUND

A metric space X is said to be proper if every closed ball B, (a)
in X is compact. An action of a group G by isometries on a metric
space X is said to be proper if for each x € X there is an open ball
B,.(z) about z (r > 0) such that g(B,(z)) N B,(x) is nonempty for only
finitely many g € G. This is slightly more restrictive than the usual
notion of a proper action on a topological space, namely that the set
{9 € G : g(K)N K nonempty } is finite for any compact K C X, but
the two notions are equivalent for actions on proper metric spaces —
see Remarks on page 132 of [11].

We refer to [11] for details on CAT(k) spaces, for k < 0; metric
spaces of global non-positive curvature bounded above by x € R.

Let g be an isometry of a CAT (k) space X, K < 0. The translation
length of ¢ is defined as I(g) = inf{d(z, gz) : * € X}. The isometry
g is said to be semi-simple if it attains its translation length at some



CAT(0) AND CAT(-1) DIMENSIONS OF HYPERBOLIC GROUPS 5

point of z. In this paper we make no assumptions on the semi-simplicity
or otherwise of our group actions. This is in contrast to previous works
[5, 10, 12] where semi-simplicity is assumed (because it is needed to
apply the usual Flat Torus Theorem). In these cases this hypothesis
can be removed by using instead the 2-dimensional Torus Theorem of
[14], at the expense of supposing that action is on a proper CAT(0)
space.

In this paper we shall use the notion of “geometric dimension” intro-
duced by Bruce Kleiner in [19] for the class of metric spaces with curva-
ture bounded above in the sense of Alexandrov [1], termed CBA spaces.
These spaces include all complete CAT(x) spaces (k € R). Associated
to any point p in a CBA space X is the space of directions 3, X, which
is known to be a complete CAT(1) space (see [20]). The geometric
dimension of a CBA space is “the largest number of times we can
pass to spaces of directions without getting the empty set”— more pre-
cisely, the smallest function GD : {CBA spaces} — NU{co} such that
GD(X) = 0 if X is discrete, and otherwise GD(X) > 1+ GD(X,X)
for all pin X.

In [19], Kleiner shows that the geometric dimension is a lower bound
for the usual covering dimension (defined in general for topological
spaces, see [18]). Moreover, he remarks (on p.412) that these two
dimensions coincide for separable CBA spaces, which include proper
CAT(k) spaces.

Since it will be useful later, we recall that the space of directions
¥, X is defined as the space of all equivalence classes of geodesics em-
anating from p, where two geodesics are said to be equivalent if the
Alexandrov angle between them is zero, and carries a metric induced
by the Alexandrov angle.

3. THE GROUP G = (a,blaba® = b?): GEOMETRIC STRUCTURES

In this section we prove all of the statements contained in Theorem
1 with the exception of part (2), which we defer until the next sec-
tion. The work is broken into three subsections: in (3.1) we show that
the group G is Fy x Z, in (3.2) we exhibit a 3-dimensional CAT(-1)
structure, and in (3.3) we introduce the one-parameter family of 2-
dimensional CAT(0) structures. We shall give a Morse theory argu-
ment that the group is free-by-cyclic. This will easily extend to show
that certain HNN-extensions with base G and Z edge groups are also
free-by-cyclic (see Proposition 19 of Section 5).

3.1. The free-by-cyclic structure. The group G has presentation
(a,b|abaa = bb), and the corresponding presentation 2-complex has
one vertex (labeled v), two 1-cells (labeled a and b), and a single hexag-
onal 2-cell (labeled by the relation).
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Any map of G to Z takes the generators a and b to integers A and
B respectively which satisfy the equation 3A + B = 2B or B = 3A.
Thus we may assume that a is taken to a generator of Z and b to three
times this generator. We can realize this homomorphism topologically
by a map from the presentation 2-complex to the circle (with one 0-cell
and one 1-cell). This map sends the vertex v to the base vertex of S!
and maps a once around the circle, and b three times around the circle.
Extend this map linearly over the 2-cell. This lifts to a Morse function
on the universal cover.

Figure 1 shows how a typical 2-cell of the universal cover looks with
respect to the Morse function. The preimage of the base vertex of S*
is a graph in the 2-complex, and is shown as the graph I' in Figure 1.
The vertices [b/3] and [2b/3] denote points which are respectively 1/3
and 2/3 along the edge b, and which map to the vertex of S'. Note that
m1(T) is F3. One can check that the preimage of a generic point of S*
will be a graph, A, with 4 vertices, and 6 edges. As the generic point
on the circle moves towards the base vertex, an edge of the preimage
graph collapses to a point, ! giving a homotopy equivalence with the
graph I'.

[b/3] [26/3]

FIGURE 1. The Morse function on the 2—cell of the F3xZ
group, and the level set I" through the vertex v.

Thus the presentation 2-complex of G can be viewed as a graph of
spaces whose underlying graph is the circle (with one vertex and one
1-cell), whose edge space is A, whose vertex space is I', and whose
maps are the homotopy equivalences A — I' obtained by collapsing
particular single edges of A. Thus G is isomorphic to the fundamental
group of this graph of spaces, and so is F3 X Z where the monodromy

IThis collapsing edge corresponds to either the ascending or the descending link
of the Morse function. See Bestvina-Brady [3] for terminology, or Brady-Miller
[8] where the connection between Morse theory and free-by-free groups is made
explicit.
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automorphism is obtained by composing the “ascending” homotopy
equivalence A — I' with the inverse of the “descending” one.

It is a good exercise to work out this automorphism explicitly from
the graph of spaces description; it is a “change of tree” automorphism,
although it is not a change of maximal trees. Here we give an explicit
description of the automorphism in terms of the original presentation
of G.

The group G is an extension of the free group F3(x,y, z) by Z where
7 acts via the automorphism ¢ : z — y +— 2z — z7ly; that is G is
the HNN-extension F3*,. The automorphism is just conjugation by a.
Putting x = a=2bz~! (so b = aza) the relation aba? = b? is rewritten

a*za® = a’za’za,
which easily rearranges to ¢(z) = z¢3(z), or rather ¢3(z) = x7 (),
where ¢ denotes conjugation by a. Thus G is isomorphic to the given
HNN-extension.

The automorphism ¢ is exponential, but with a very low expansion
rate: A = 2.325 = (the solution to A> = X + 1). This may give a
heuristic explanation for the reluctance of G to act on a CAT(—1) 2-
complex. We do not know whether the extensions Fz*,» for n > 1
(which are subgroups of index n in G) are CAT(—1) in dimension two.
This latter problem was raised by Lee Mosher and is closely related to
the following question suggested by Leonid Potyagailo.

Question 1. Does every 2-dimensional word hyperbolic group contain
a finite index subgroup which acts properly cocompactly by isometries
on a 2-dimensional CAT(—1) proper metric space?

3.2. The 3-dimensional CAT(-1) structure. Let P denote a reg-
ular solid octahedron of “small” volume in hyperbolic 3-space, as illus-
trated in Figure 3.2. We label the vertices 1,2, ..,6 as indicated in the
figure, and define the piecewise hyperbolic 3-complex M to be obtained
from P by identifying the pair of faces labelled (1,4,6) and (6,3,5) to
a single face A, and the pair (1,5,2) and (2, 4, 3) to a single face B (re-
specting the order of vertices in each case). The remaining four faces
are left open.

Choose a basepoint in the interior of P and define oriented paths a
and bin M passing through the faces A and B, respectively, as indicated
in the figure. One easily checks that the loops a and b generate (M)
subject to the single relation abaa = bb. That is m (M) = G. (In fact
the K (G, 1) complex K discussed the next subsection can be embedded
in M as a “2-spine”’— the complex K is a deformation retract of M,
showing that M is also a K (G, 1)).

The complex M has a single vertex v with link Lk(v, M) as illus-
trated in Figure 3.2. This is a Moebius band composed of six spherical
quadrilaterals with sidelengths all equal to 7/3 — &1 and diagonals all
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FIGURE 2. The 3-dimensional piecewise hyperbolic com-
plex M = P/ ~, and its vertex link Lk(v, M).

of length /2 — g5 where &1, €5 both tend to zero as the chosen volume
of the octahedron P tends towards 0. A systole for Lk(v, M) is shown
in bold in the figure. If P were chosen FEuclidean, then the length
of this systole would be 4.(7/3) + 2u where p (the length of the seg-
ment crossing quadrilateral 2) lies strictly between 7/3 and 7 /4 (in fact
i > 72°). In the small volume hyperbolic case the systole measures
4.(m/3) + 2 — € where € also tends to 0 with the volume of P. For
sufficiently small choice of volume of P this value is larger than 27 and
M is a locally CAT(-1) space. This also gives a further way of seeing
that M is indeed a compact K (G, 1) for our group G.

We refer the reader to [6] for further details concerning determination
of the systole in Lk(v, M) and the calculation of its length.

3.3. The 1-parameter family of CAT(0) structures. Let K de-
note the presentation complex defined by the l-relator presentation
G = (a,b|abaa = bb). The associated Cayley complex K (the univer-
sal cover of K) has been previously studied by both Haglund [16] and
Ballman and Brin [2]. It is one of the two completely regular simply
connected polyhedra which can be built out of regular hexagonal cells
in such a way that every vertex link is a complete graph on 4 vertices.
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The other is the Cayley complex associated to the one-relator presen-
tation with relation baa = abb, which defines the Geisking 3-manifold
group. A portion of the complex K is illustrated in Figure 3. Note
that the band of hexagons immediately surrounding the central one in
the figure is twisted, so that their union is a Moebius band rather than
an annulus as in the case of the Geisking complex.

The complex K very naturally admits a CAT(0) metric in which
each cell is a regular Euclidean hexagon. Consequently, the quotient
presentation 2-complex K is a locally CAT(0) K (G, 1), and the group
G therefore has CAT(0) dimension equal to 2. Moreover, since this

Haglund, Ballman-Brin complex K does not contain any isometrically

embedded flat planes (because of the twist), we have another way of
2

concluding that the group G is hyperbolic.

Note: twist in outer band of hexagor

FIGURE 3. The Cayley complex for (a,b|aba® = b?).

2In [17], M. Kapovich considered the full isometry group Isom(K) of K and
showed, by using the existence of torsion elements, that Isom(f( ) does not act
properly isometrically on any CAT(—1) space. This line of argument was pursued
in [6] for this and various similar examples. However the techniques used here to
study the torsion free subgroup G are necessarily quite different and we have not
as yet succeeded in extending them in this way to other examples.
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It is natural to ask whether there are any piecewise Euclidean, G-
equivariant, CAT(0) structures on the complex K other than the reg-
ular one just described. In fact, we have the following classification of
such structures.

Proposition 4. There exists a continuous family {K; : t € R} of
piecewise Buclidean locally CAT(0) metrics on the presentation complex
K. Furthermore, any locally CAT(0) metric on K which is obtained
by edge identifications on a convex euclidean hexagon is isometric, up
to a linear scaling, to K; for some t.

Proof. We start with an edge identification on a convex euclidean
hexagon H as illustrated in Figure 4, where we identify the edges with
common labels. The figure H need not be a regular hexagon, however
all three edges labelled @ must have the same length, all three b-edges
the same length, and when identifications are made the link condition
at the vertex must be satisfied. Label the angles of H as shown in Fig-
ure 4: namely, we label the angle from a* to b™ by «g, from a~ to b~
by as, from a™ to a” by aq, from bt to b~ by ay, from a™ to b~ by as,
and from b* to a~ by as. The link of the vertex v in the presentation
2-complex for G is the complete graph on 4 vertices, with each edge
a; complementary to (sharing no vertices with) «;, 3, where indices are
taken mod 6. The link condition requires that the sum of the angles
contributing to each simple circuit in this graph is at least 2r. On the
other hand, since the angles «; are angles in a Euclidean hexagon, they
must sum to 47. The next lemma deduces relations among the a;. We
will need to use it again later on, with the weaker assumption that the
sum of the «; is at most 47, so we prove it in that generality now.

Lemma 5. Suppose that the complete graph on 4 vertices has a CAT(1)
metric, where each edge length is in the range (0, 7], and where the total
of all siz edge lengths is at most 4w. Then the following are true.

(1) The total of all 6 edges is exactly 4.

(2) The total of the edge lengths in any circuit of combinatorial
length 3 is exactly 2m.

(3) The lengths of complementary edges (no vertices in common)
are equal.

Proof. Label the edges by «; where i € {0,1,2,3,4,5}, so that «; and
a;+3 (indices are (mod 6)) are labels of complementary edges. The
CAT(1) condition requires that the sum of all edges in each complete
subgraph on 3 vertices is at least 2. This gives 4 linear inequalities:

Qg+ a1 +ay > 27
agt+oag+as > 21
as+ar+a; > 27
as+aq+ay > 27
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These combine with the hypothesis that E?:o a; < 4w to give 5 equal-
ities. To see this, simply add the 4 inequalities and divide by 2 to
get Z?:o «; > 4m. These two opposite inequalities force equality, and
hence equalities in all of the above.

Finally, since the 4 inequalities become 4 equations, one can reduce
them to get a; = ;13 where indices are taken (mod 6). O

FIGURE 4. The 1-parameter family of 2-dimensional
CAT(0) structures for G.

Thus we have extra information about the hexagonal 2-cell. Namely,
ap = agz, a = ay, (g = a5 (as indicated in Figure 4) and ag+aq +ag =
27. (This is also sufficient to ensure that the link condition is satisfied).
Note that all the vertices A, B,C, D, E must lie on a common circle.
This is seen in two steps. First, O(ABCD) is a cyclic quadrilateral,
since |AB| = |C'D| and the angle s at B equals the angle a5 at C' (it is
an isosceles trapesium). Secondly, J(ABDZFE) is a cyclic quadrilateral,
since it is also an isosceles trapesium; |AB| = |ED| and angle L BAE
equals angle L DFEA. These last two angles are equal since we are given
that ap = a3, and the triangle A(AFE) is isosceles. These two cyclic
quadrilaterals have three points A, B, D in common, and so all 5 points
lie on a common circle.

An arbitrary locally CAT(0) piecewise Euclidean strcture on K may
now be described as follows. Take a circle with center O and points
A, B,C, D, E on its circumference, so that

LAOB = £COD = £DOF = 2x

and that £ BOC' = 2y for positive numbers z,y satisfying 3z +y < 7.
Now construct an isosceles triangle A(FAFE) on the base AE which
is similar to the triangle A(DCE). Choose F' so that it lies outside
of the pentagon ABC'DE. We now have a hexagon ABCDEF which
satisfies all the conditions to be a 2-cell in a non-positively curved
presentation 2-complex for G, with the possible exception that the
edge length |AF| = |FE| may not be equal to the edge length |BC/|.
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Moreover, the construction depends only on the choice of angles x and
y (subject to 3x +y < 7).

We suppose without loss of generality that the circle containing
A,B,C, D, E has unit radius. Using the facts that |BC| = 2siny,
|CD| = 2sinz, |CE| = 2sin(2z), |AE| = 2sin(r — 3z + y)) =
2sin(3x + y), and the fact that the triangles A(DCFE) and A(FAE)
are similar, we have

|BC|  siny
|ICD|  sinx

|AF|  sin(3x+y) sin(3z +y)

d = -
o |C'D]| sin(2z) 2sin x cos x

Therefore |AF| = |BC| if and only if the following trigonometric iden-
tity is satisfied:

(1) sin(3z 4+ y) = 2cos(z)sin(y) .
Expanding the left hand side gives

sin(3z) cos(y) + cos(3x) sin(y) = 2cos(x)sin(y) .
Grouping the sin(y) terms and solving for tan(y) yields

sin(3x)
2cosx — cos(3z)

(2) tany =

This expresses tany as a smooth function of z for 0 < x < 7/3. Thus,
for each = € (0, %), there is a unique y-value in the interval (0,7%)
for which the corresponding hexagon yields a non-positively curved, 2-
dimensional K (G,1). These K(G, 1) spaces form a 1-parameter family
Ky, for t € R, where we set t = cot(3z), say, for x ranging over the
interval (0, %). (Note: With this convention Ky denotes the regular
hexagonal structure, = ). This completes the proof of Proposition
4. O

We observe that the equation (2) given in the above proof may be

re-expressed by using the identities sin(3z) = 3 sin cos?  — sin® x and
cos(3x) = cos® z — 3coszsin?z. Thus

sin (3 cos? x — sin® x tanz(3 — tan®x
(3) tany = ( 2 ) - : 2 )

cos (b sin” x + cos? x) Stan®x + 1

Note that, for = € (0, %), we have tan*(x) € (0, 3).

Lemma 6. Let U = tan®(x) and V = tan®(y), and suppose throughout

that x € (0,%) and y € (0,%). Given that the identity (3) holds, then

the following identities also hold, with U € (0, 3):

(1) sin(y) V(1+U) 3-0U)

= >0
sin(z) U1l+V) VUZ+18U +1



CAT(0) AND CAT(-1) DIMENSIONS OF HYPERBOLIC GROUPS 13

= >0
cos(z) (1+V) VU?2+18U +1

Proof. We first of note that for x, y in the given ranges, all expressions
in the statement of the Lemma take positive values (we consider only
positive valued square roots).

The first equalities in (4) and (5) are immediate consequences of
the usual trigonometric identities expressing sin ¢ and cos 6 in terms of
tan 6: namely,

(5) cos(y) (1+70) (5U +1)

tan? 6 1
.92 2
= — d 0=—"+—.
S 1+ tan?6 an €08 1+ tan%6
Equation 3 also gives us the fundamental identity
UB—-U)?

(50 + 1)

whence

14V — (3-U)U+ (U +1)?  (U+1)(U?+18U +1)
= (BU 1 12 - (U 1 1)2

The remaining equalities in (4) and (5) now follow easily. O

Lemma 7. Label a fundamental domain hexagon in the universal cover
of K; as in Figure 4, and suppose that the scaling on the metric for K,
is such that the circle on which A, ..., E all lie has unit radius. Let O
be the center of this circle, and let 2x and 2y be the respective measures
of the angles AOB and BOC. (We have t = cot(3z)).

For u,v € {a,b} we define 6, to be the distance in K; between the
midpoints of the two edges in any edge path labelled uv in the 1-skeleton
of Ky. Then we have

(1) éap = |AC|/2 = sin(x + y).
(2) 6pa = |BD|/2 = sin(z +y).
(3) baa = |CE|/2 = sin(2z).
(4) o = |AE|/2 = sin(3z + y) = 2coszsiny.

Proof. The proof uses just the following observation from trigonom-
etry. The length of the base of an isosceles triangle with two edges
of length 1 subtending an angle of ¢ is 2sin(6/2). The segments AC,
BD, CE and AF subtend angles at the center O of the circle measur-
ing (respectively) 2(x +y), 2(z+vy), 2z and 2(7 — (3x+y)). The result
follows from the fact that each path ab, ba, aa and bb occur on the
boundary of the given hexagon, and that ¢,, is exactly half the length
of the interval spanned by the endpoints of the path uv. In case (4) we
apply the identity sin(m — ) = sin(#) and the equation (1) derived in
the proof of Proposition 4. O
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Proposition 8. Let w be a positive word in the generators a,b of the
group G which contains at least one occurrence of b (w # a*). Let

L:G—7Z

denote the abelianisation homomorphism (L(a) = 1, L(b) = 3). Then
in any of the 2-dimensional CAT(0) structures Ky for G the translation
length of w is strictly less than that of (") :
l(w)
—= < L(w).
(@ (w)
(w)

Moreover, we have 755 — L(w) ast — oo (x — 0).

Proof. Without loss of generality we suppose that the metric on K, is
scaled as in the statement of Lemma 7. We first observe that, in the
universal cover of any of the K, the piecewise geodesic which connects
midpoints of successive a-edges is actually a geodesic. This allows us to
compute the translation length of a precisely to be [(a) = d,, = sin(2z).

On the other hand, we get an upper bound estimate for the trans-
lation length of w obtained by measuring the length of the piecewise
geodesic path drawn between successive midpoints of the edges of the
hexagons in the edge-path corresponding to w. More precisely, let
W = Uy ... u, be a positive word in a and b (u; € {a,b} for all i),
viewed as a cyclic word. Then

n 1 n
Hw) < Suguig - while  L(w) = > L(uis).
i=1 i=1

The inequality stated in the Lemma now follows by showing that
duv/l(a) < 3L(uv) in each of the cases uv = ab,ba, and bb. (Since,
in addition we have d,,/l(a) = 1 = L(aa), we obtain an inequality
I(w)/l(a) < L(w) which is strict if and only if w # a* for some k).
Case uv = ab or ba: By Lemma 7 we have

_ 2sin(z+y) sinxzcosy+coszsiny  cosy n siny

2 = .
Yar/1(0) sin(2z) sin x cos © cosr  sinx
Applying Lemma 6 this gives
1 — 4 1
20, /la) = LT HVFB0) AU+ 4= L{ab).

= <
VU? 4+ 18U +1 VU2 4+ 18U +1

The inequality follows since vU? + 18U +1 > (U +1) > 1, for U > 0.
The case uv = ba is identical.

Case uv = bb: This time, by Lemmas 7 and 6, we have
2coswsiny  siny (3-0) _ 3:1L(bb).

Oep/1(a) = sin(2z)  sinz U2+ 18U + 1 2

The inequality follows once again since U > 0.
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This completes the proof that [(w)/l(a) < L(w) for positive words
w # a”.

Finally, we observe that as x tends to zero the hexagon H of Figure
4 degenerates towards an interval with endpoints A and E and length
2|BC| = 3|AB|+|BC|. Thus K; collapses onto a real line where trans-
lation lengths are determined by the abelianisation homomorphism:
l(g)/l(a) = L(g) for all ¢ € G. This completes the proof of Proposi-
tion 8. U

4. PROOF OF THEOREM 1 (2): AN ANALOGUE FLAT TORUS
THEOREM

In this section we complete the proof of Theorem 1 by establishing
part (2), the “analogue Flat Torus Theorem”. This section forms the
geometric heart of this paper. In the interest of continuity, we defer
the details of two major claims in the proof below until the next two
subsections.

Theorem 9. Let G = (a,b|aba® = b*). Let X be a proper CAT(0)
space of dimension 2 on which G acts properly discontinuously by isome-
tries. There is a G-equivariant map ¢ from the universal cover of some
K, (up to a constant scaling of the metric on K,) into X which is an
isometry on the 2-cells, and which is a local isometric embedding off
the 0-skeleton and injective on vertex links.

Proof. We construct a family of maps K — X from the Cayley com-
plex of G into X as follows. Let I' denote the 1-skeleton of K (the
Cayley graph of G with respect to {a,b}) and let v denote a base ver-
tex in I". Given any point z € X we may define a continuous map
vz I' = X by sending v to x, extending G-equivariantly on the vertex
set of I" and then mapping each edge to the (unique) geodesic joining
the images of its endpoints. This construction also leads to a natural
choice of “lengths” for each edge in Lk(v, K). For simplicity of notation
we write L = Lk(v, K), the link of v in the Cayley complex, and write
3 = 3. X, the space of directions at = in X. We recall that L is the
complete graph on 4 vertices. If p denotes a vertex of L, determined
by the edge e say, then we write p for the direction in ¥ determined
by the geodesic segment p,(e). We now assign to each edge (p,q) in
L a “length” given by the distance between p and g in ». Note that,
since it is possible that p = g, which endows the edge (p,q) with zero
length, this choice determines a pseudo-metric, rather than a metric,
on L. We shall write L, to denote the graph L equipped with this
pseudo-metric. 'We emphasise that the pseudo-metric defined on L,
depends in an essential way on the initial point x € X chosen to start
the construction.
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There are now two key claims whose proofs we defer to the subse-
quent sections. We first claim that there exists a point x in X which
minimises the combined displacement function f(x) = d(z,a(z)) +
d(z,b(x)).  This is a straightforward consequence of Lemma 10 in
subsection 4.1 below, since here G is a torsion free hyperbolic group of
cohomlogical dimension 2.

The key geometric insight in this proof is the following claim. If
the point x is chosen so as to minimise the combined displacement
function f then L, turns out to satisfy the link condition for a CAT(1)
metric graph: each circuit has length at least 2m.  This is proven in
subsection 4.2; specifically Lemma 12 and the Remark which follows
it.

On the other hand, the six edge lengths in L, appear as the angles of
a “geodesic hexagon” C'in X (take the image of any hexagonal circuit
in [' which bounds a 2-cell of K). Nonpositive curvature in X implies
that the sum of these angles is at most 47 (see [12], Lemma 1, for
example). It now follows by Lemma 5 that the total of all six angles is
exactly 4m and that each simple circuit in L of combinatorial length 3
has length exactly 27.

Note that the above arguments apply even when there are zero length
edges in L. By the Flat Triangle Lemma [11], it now follows that the
geodesic hexagon C' actually bounds a genuine convex (but possibly
degenerate) 2-dimensional Euclidean hexagon H isometrically embed-
ded in X. By properness of the action of G on X this hexagon cannot
degenerate on to an interval (for then the orbit of z would lie on a
single line!), so has non-empty interior and nonzero angles. We now
choose a G-equivariant metric on K by letting each 2-cell be isometric
to the hexagon H, and extend the map ¢, to a map ¢ : K — X which
is locally isometric on the interior of 2-cells. Note that the link of each
vertex in K is isometric to L, and CAT(1). Thus, by Proposition 4, K
equipped with this metric is (up to scaling) G-equivariantly isometric
to the universal cover of one of the model complexes K; for t € R.
In particular, all edge-lengths in the link L are strictly less than 7. It
therefore follows from Lemma 12 that the map ¢, : L, — >, X Lnduced
on the vertex link is injective, and as a consequence, that ¢ : K; — X
is locally injective.

It now only remains show that ¢ is a locally isometric embedding
away from the 0-skeleton. This follows easily from the local injectivity
and the fact that the hexagon H (and each of its G translates) is a
convex Euclidean hexagon in X. In particular, the link of a point
pE K, \ l?t(o) is either a circle of length 27 or a 6-graph all of whose
edges are of length exactly m. In either case, the ¢, image of this link
has diameter exactly 7 and so is a convex subspace of Y, X. O
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4.1. Finding a minimum for the combined displacement. In this
section we prove the following result:

Lemma 10. Let X be a proper CAT(0) space, g1, 92, ..., gn a finite
collection of isometries of X which generate a group G acting properly
on X, and Ay, Mg, ..., N, strictly positive real numbers. Then either

(1) there exists a point in X which minimises the “combined dis-
placement function”:

fiX >R fla) = Z Nid(x, gi(x))

or
(2) the group G fizes a point x on the ideal boundary 0X of X.

If G happens to be a word hyperbolic group with finite K(G,1) then
case (2) above implies that either G = Z or cd(G) < dim(X) — 1.

Proof. In the first instance, if f is a proper map then it clearly achieves
a minimum. Supposing otherwise, and using the fact that X is proper
(and so X U JX is a compact space — see, for example, Exercise
I11.8.15(2) of [11]), one can find a sequence of points {xy }n which con-
verges to a point z., in 0X yet such that the sequence {f(xx)} is
bounded. It follows that each g; fixes 2o, and so (2) holds.

Now suppose that G is a hyperbolic group with finite K (G, 1) (ie: G
is torsion free). In particular, G is finitely generated and torsion free.
By considering the action of G' on the horofunctions at z,, we deduce
an exact sequence

H—-G—-Z

where H is the subgroup of elements which act by leaving invariant
every horosphere at .

Suppose firstly that the map G — 7Z is nontrivial. By properness of
the action of GG, any two elements which map nontrivially to Z must
share a common power. Thus all elements of G — H leave fixed a
common pair of points {p, ¢} in OG. Moreover H must also fix the pair
{p, q} (since it conjugates elements of G — H to elements of G — H).
But this implies that G is virtually Z, or rather Z since it is torsion
free.

We may now suppose that G = H and acts by leaving invariant all
horospheres at 2. But then our conclusion that c¢d(G) < dim(X) —1
follows directly from Proposition 4.4 of [14]. O

4.2. Angle measurements. In this section we wish to use an idea
from elementary calculus: that the “rate of change” of a function in
any direction from a local minimum is never negative. The functions
that we consider are linear combinations of distance functions in a
CAT(0) space. For these reasons we introduce the following:
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Lemma 11. Let X be a CAT(0) space, and [p, q] a nontrivial geodesic
segment (d(p,q) > 0), let v : [0,¢e] — X denote a nontrivial constant
speed geodesic with v(0) = p, and let 6 denote the Alexandrov angle at
p between [p,q] and~y. Let f :[0,€e] — R be the (necessarily continuous)
function such that f(t) = d(~(t),q). Then

ft) = f(0)

t—0;t>0 t

= —cosf .

We refer to the above limit as the derivative of f in the direction of ~.

Remark. The above Lemma asserts, if you like, the existence of a
directional derivative in the first variable of the distance function, which
is defined, for a point (p,q) € X x X, over the space of directions ¥, X
at pin X.

Proof. Note firstly that the lemma is precisely true in the Euclidean
plane E2. Now, given the general situation described above, choose
in E? points p, ¢ such that dg(p,q) = d(p,q), and a geodesic 7 from p
such that the Alexandrov angle at p between 7 and [p, q] equals #. This

o~ o~

configuration determines the function f(t) = dg(5(t),q) where f(0) =
f(0) = fo say. By one version of the comparison axiom (Proposition
I1.1.7 (5) of [11]), we have that f(t) < f(t) for all t € [0, ¢]. Since f is
a convex function we then have fy — tcosf < f (t) < f(t) and hence
M > —cosf for all t € [0, €.

Fix s € (0,¢| and let A'(p', ¢, ") denote the Euclidean comparison
triangle for the triangle in X with corners p,q and r = v(s). That is
de(p',q') = d(p,q), etc... Let 6, denote the angle in E? between the
sides of A’ meeting at p’. Also, define a function f; : [0,s] — R such
that f4(¢) is the distance from ¢’ to a point a distance t from p’ along
the side of A’ between p’ and /. By the comparison axiom, we have
f(t) < fs(t) for every t € [0, s]. Also by the comparison axiom, 6 < 6,
for each s. Moreover, by the interpretation of Alexandrov angle as
the “strong upper angle” (see Proposition 1.1.16 of [11]), we have that

lim 6, =46.

Now, suppose we are given a small € > 0. Then there exists s € (0, €]
such that 0 < 6, < 0 4+ . Since f, is a differentiable function with
derivative — cos s < —cos(f + ) (e sufficiently small) we may find a
sufficiently small § such that f(0) < fs(d) < fo — dcos(6 +¢). But this
implies that for all sufficiently small € > 0 there exists a 6 > 0 such

that 5

This establishes the Lemma. O

< —cos(@+¢) .

As in the main body of the proof of Theorem 9, we suppose that
G = {(a,blbab® = a*) acts properly by isometries on a proper CAT(0)
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space X of geometric dimension two. We recall the notation introduced
in the proof of Theorem 9. In particular, for a choice of point z € X,
we defined the map ¢, : I' — X, where I' denotes the Cayley graph
of G (with respect to {a,b}). As before we write L = Lk(v, K) and
3 = 3, X, the space of directions at = in X, and we write p for the
point in 3 associated to a vertex p of L via the map ¢,. Recall that L
is a complete graph on 4 vertices.

Since X is CAT(0) the space of directions ¥ is CAT(1). We recall
that CAT(1) spaces are uniquely m-geodesic: if d(z,y) < 7 then there
exists a unique geodesic in the space joining x to y. We also note
that, by the dimension constraint on X, ¥ is 1-dimensional (a CAT(1)
metric R-graph). We note that, in a 1-dimensional CBA space, a path
is locally godesic if and only if it is locally embedded.

Lemma 12. Suppose that © € X is chosen so as to minimise the
combined displacement f(x) = d(x,a(x)) + d(z,b(x)). Let p1,p2,ps3
denote three distinct vertices of L and, for eachi = 1,2,3, let ¢; denote
the angle measured between p; and D, in X (indices taken mod 3),
and suppose that each ¢; < w. Then either ¢ + ¢o + ¢3 > 27 or the
(unique) geodesic triangle in 3 spanned by the vertices Dy, Dy, Py 1S
closed geodesic of length exactly 2.

Remark. Note that if ¢; = 7, for some ¢, then the triangle inequality
implies straightaway that ¢1 + ¢o + ¢3 > 27.

Proof. Suppose that ¢; + ¢o + ¢35 < 2. We show that the geodesic
triangle spanned by p;, Ps, D5 in X is a closed geodesic of length exactly
27. Since each ¢; < m, and since X is uniquely m-geodesic space, there
is a unique (but possibly degenerate) geodesic triangle A spanned by
Dy, Do, P3- Either this triangle supports a simple closed circuit in ¥ or it
is in fact a (possibly degenerate) tripod. In the former case, since ¥ is
1-dimensional and CAT(-1), the simple circuit is a closed geodesic and
must have length at least 2r. Thus A is exactly a 27 closed geodesic,
as required. In the latter case we shall obtain a contradiction.

Suppose then that the geodesic triangle A is a tripod. We let m
denote the branch point of the tripod (or rather the median of p,, by, D5
— the unique point which lies on all three sides of the triangle A) and
let 6; denote the angle between p, and m, for each i = 1,2,3. We have
0 + 0y + 03 = %(¢1+¢2+¢3) <.

We now consider the effect of moving the point z a very small dis-
tance in the direction m. For convenience we G-equivariantly subdivide
all edges in the Cayley graph I'. Let ey, eq, €3, e4 denote the geodesic
segments at x in X which are the images under ¢, of the four half-
edges of I' which emanate from the vertex v. We suppose that the
labels are such that e; determines the point p; in ¥ for each i = 1,2, 3.
We now allow x to move in the direction of m while fixing the other
endpoints of the “half-edges” e;. Using Lemma 11 we may compute
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the derivative of £(e;) in the direction m at x to be simply — cos6; for
each i = 1,2,3. On the other hand the derivative of £(e4) is at most
1 (in any direction). Thus it follows from Lemma 13 below that the
sum of the lengths of the e; strictly decreases under a sufficiently small
perturbation of the point x. (Note that since we suppose each ¢; < 7
we cannot have equality in Lemma 13).

Performing this disturbance G-equivariantly, it is clear that the sum
of the lengths of the new segments €, is an upper bound for f(z’) and
hence that f(z') < f(z) for a sufficiently small disturbance. But this
contradicts the choice of x. U

Lemma 13. Given real numbers 0y, 6,03 > 0 such that 01+0,+605 < 7,
we have
cos by + cos by + cosbls > 1

with equality if and ony if 01 + 05 + 03 = 7 and 6; = 0 for some 1.
Proof. The region of interest in R? is a right simplex
R = {(91,92,93) . 92 Z 0 and 91 +92+93 S 71'}.

Write g(61, 02, 603) = cos by + cos Oy + cos 03. We first consider the prob-
lem of minimisig the function g over the 2-simplex R, = {(61,05,03) €
R : 0+ 60y+ 03 = m}. Observe that ¢ = 1 on the boundary of R,
namely when 6, + 0y + 03 = 7w and 6; = 0 for some i. For, if §; = 0 and
0 = m— 03, for instance, then g(0, 05, 63) = 1+ cos(m —63) +cosf; = 1.

Consider now the possibility of local minima in the interior of R,.
At such points the gradient of ¢ is normal to R,. That is,

Vg = —(sinfy,sinfy,sinf3) = \(1,1,1) for some A € R.

Thus sinf; = sinf, = sinf3 = —A. But then one sees that §; = 0y =
03 = % (since if, for some i # j, we had ¢; # 60; but sinf; = sin0; we
would have 0; +0; = m contradicting the choice of point in the interior
of Rr). Now g(%§,%,%) =3cosg = % > 1. Therefore g is always strictly
greater that 1 on the interior of R,.

Finally, since g is strictly decreasing along rays from the origin

(through R), we deduce that g > 1 at all points of R\ R,. O

Remark 14. In fact the barycentre of R is a local maximum of g over
Ry, as can be seen by looking at the Hessian matrix which is — cos(§) I,
at the barycentre. More generally, an easy induction shows that

g(by,..,0,) = Zcosé’i >n—2
i=1

whenever 6; are non-negative and sum to at most 7, with equality
precisely on the 1-skeleton of the “level 7w simplex” R,.
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5. THE HYPERBOLIC VERSUS CAT(0) PROBLEM: THEOREM 2

Consider the following family of 2-dimensional groups:
Guwm = (a,b,t|abaa = bb, ta™t ™ = w)

with m € Z\ {0} and w a positive word in a, b which contains at least
one b.

These are easily seen to be 2-dimensional, since they are HNN’s of
the 2-dimensional group G over infinite cyclic subgroups. In particular,
they are all torsion free groups.

That this family contains an infinite collection of hyperbolic groups
which do not act properly isometrically on any proper CAT(0) space of
dimension 2 follows by combining Proposition 16 and Proposition 17
below. More precisely, we obtain:

Theorem 15. Let w to be any positive word which represents a primi-
tive element of G different from a, and let m € Z such that |m| > L(w).
Then Gy 1s a 2-dimensional hyperbolic group but does not act prop-
erly by isometries on any 2-dimensional CAT(0) space.

For example, one could take w = b and |m| > 3. (For other possible
words w see Remark 18 below). Finally, in Proposition 19, we see
that when one chooses m = L(w), the resulting group is always a free-
by-cyclic group. In the case of the previous example, the group G 3
is isomorphic to Fg x Z. These observations complete the proof of
Theorem 2.

Proposition 16. Let w denote a positive word in the letters a,b which
contains at least one b. If |m| > L(w) then Gy admits no proper
isometric action on a proper CAT(0) space of dimension 2.

Proof. Suppose that G, ., acts properly isometrically on a proper
CAT(0) space X of dimension 2. The group G, , is an HNN-extension
of the group G = (a,b|abaa = bb) of Theorem 1. Thus G acts prop-
erly isometrically on X (as a subgroup of G, ,,) and by Theorem 1
we have a G-equivariant map ¢ : K; — X which is a local isometric
embedding off the 0-skeleton.

The translation lengths of the elements a and w (acting on X') may
be measured in I?t, and this information can be used to estimate lengths
in X as follows. Since the translation axis for a connects midpoints of
adjacent edges in the hexagonal 2-cell it avoids the 0-skeleton of K;.
Thus its ¢ image in X is still a geodesic, and so the translation length
of a on X is equal to the translation length, I(a), of a on K;. The axis
for w may pass through the 0-skeleton, and so may not have a geodesic
image in X. Thus all we can say is that the translation length of w
on X is bounded above by the translation length, [(w), of w on K;.
From Proposition 4 we have that [(w)/l(a) < L(w), and the preceding
analysis tells us that the same inequality holds if we replace () by
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translation lengths in X. However, the relation ta™t ! = w in Guwm
forces l(w)/l(a) = |m| > L(w), a contradiction. O

Proposition 17. Let w denote a positive word in the letters a,b which
contains at least one b. If w represents a primitive element of the group
G (and m # 0) then G, is a word hyperbolic group.

Proof. The groups G, ,, are HNN extensions of the hyperbolic group
G via an isomorphism identifying the cyclic subgroup (a™) with the
cyclic subgroup (w), so we can apply criterion (2) of Corollary 2.3 of
the Bestvina-Feighn Combination Theorem [4].

Since the centralizer of any element in a torsion free hyperbolic group
is always an infinite cyclic group, it follows that any primitive element
w of G generates its own centralizer. Therefore (w) is malnormal in G,
and so one of the conditions (a), (b) of criterion (2) in Corollary 2.3
holds.

Note also that no non-trivial power of a is conjugate to a non-trivial
power of w. For if this were the case then the ratio {(w)/l(a) would be
constant over the full range of model spaces K; for G. However, the
fact that I(w)/l(a) tends towards a strict upper bound (Proposition 8)
shows that this is not the case. Thus, the set C'C'(x) of criterion (2)
of Corollary 2.3 is always finite (actually is always {1}).

By criterion (2) of Corollary 2.3 of [4] and the results of the pre-
ceding two paragraphs, we conclude that the HNN extension G, is
torsion free hyperbolic whenever w is a (positive) primitive element of
G different from a. O

Remark 18. The only technical obstacle to applying the above propo-
sitions is knowing when a positive word w represents a primitive ele-
ment of G. In many cases, however, we can give a geometric argument
using geodesics in the universal cover of the regular hexagonal structure
Ky to prove primitivity.

For suitable w, we observe that the piecewise geodesic which connects
midpoints of successive edges in the bi-infinite edge-path determined
by w is actually an axis for w. ® This is the case if w is a positive
word which is required not to contain either of the two positive, length
3 subwords (aba and baa) which form half of the hexagonal relator. If,
moreover, w has odd wordlength then the axis is unique (w acts as
a “glide reflection” along this axis). Since any root of w must leave
this axis invariant, it follows that w is primitive in G if it is primitive
in the free group Fiap (i.e: if it is not obviously a nontrivial power).
Examples of such primitive elements w include b, ab®* (n > 1), ab®ab®

3This reasoning enabled us earlier to compute exact translation lengths for the
element a.
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etc. We note however that ab® = (a?b)? is not primitive. Many further
elements may be seen to be primitive by variations on this argument.
These include elements ab and a?b, as well as positive words which
contain no subword aba or baa, other than the exception ab® just men-
tioned.

The next proposition shows that the examples afforded by Theorem
15 include infinitely many free-by-cyclic groups.

Proposition 19. If m = L(w), then the group Gy, is free-by-cyclic.
Proof. Consider the group
Gys = (a,b,t|abaa = bb,ta*t ™' =b)

for example.

Recall that the original group G admits an epimorphism L : G — Z,
where L(b) = 3L(a). Since the abelianization of the new relation
still implies that L(b) = 3L(a), we can extend the circle-valued Morse
function from the presentation 2-complex of G' to the presentation 2-
complex for Gy 3 by mapping ¢ once around the circle, and extending
“linearly” over the new 2-cell as shown in Figure 5. Ascending and
descending links are trees (segments of length two each), so the space
is homeomorphic to the total space of a graph of spaces where the un-
derlying graph is again a one vertex circle, the vertex space is as shown
on the left hand side of Figure 5, and the edge space is a graph which
is homotopy equivalent to this, and maps are homotopy equivalences.
Thus Gy 3 is isomorphic to a semidirect product Fg x Z.

Nt

[b/3] [2b/3]

F1GURE 5. The Morse function on the extra 2-cell in the
Fs x Z group, and the level set through v.

In the general case of the group G, rw) the picture of the Morse
function on the new 2-cell will be as in Figure 5, with a® replaced by
a™) and with b replace by w. This has the effect of adding L(w) new
edges to the level set I' passing through v. Just as in the preceding
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paragraph, the ascending and descending links will still be contractible
(segments of length 2 each). Thus

Gusw = (a.bt|abaa = bb,ta"t™ = w)
is free-by-cyclic with free kernel of rank 3 4+ L(w). 0

Remark 20. We do not know if any of the groups G, ,, where |m| >
L(w) are CAT(0). Some of them may indeed have 3-dimensional CAT(0)
structures. However, it is hard to imagine low dimensional CAT(0)
structures for Gy, ,, when |m| > L(w), or when one takes further HNN
extensions over suitably chosen Z subgroups of these G, ,,. There is
more to explore here.
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