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1. Introduction

1.1. Our result. Hyperbolic groups are algorithmically tractable (their word and conju-
gacy problems are straight–forward) and are characterisedby a tree–like property that geo-
desic triangles in their Cayley graphs are close to tripods [5, 8]. The purpose of this article
is to show that none–the–less some harbour extreme wildnesswithin their subgroups—
their finite–rank free subgroups, even. We prove (the terminology is explained below):

Theorem 1.1. There are hyperbolic groupsΓk for all k ≥ 1 with free rank–(k+ 18) sub-
groupsΛk whose distortion satisfiesDistΓk

Λk
� Ak—that is, grows at least like the k–th of

Ackermann’s functions.

A distortion functionDistGH measures the degree to which a subgroupH ≤ G folds in on
itself within G by comparing the intrinsic word metric onH with the extrinsic word metric
inherited fromG. SupposeS andT are finite generating sets forG andH, respectively.
Then

DistGH(n) := max{ dT(1, g) | g ∈ H with dS(1, g) ≤ n } .

Up to the following equivalence, capturing qualitative agreement of growth rates, DistG
H

does not depend onS andT. For f , g : N → N, we write f � g when there existsC > 0
such thatf (n) ≤ Cg(Cn+C) +Cn+C for all n. Define f ≃ g when f � g andg � f .

Ackermann’sAk : N→ N are a family of fast–growing functions defined recursively:

A0(n) = n+ 2 for n ≥ 0,

Ak(0) =


0 for k = 1

1 for k ≥ 2,

and Ak+1(n+ 1) = Ak(Ak+1(n)) for k, n ≥ 0.

In particular,A1(n) = 2n, A2(n) = 2n andA3(n) is then–fold iterated power of 2. They are
representatives of the successive levels of the Grzegorczyk hierarchy of primitive recursive
functions—see, for example, [15].
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1.2. The organisation of this article and an outline of our approach. Our groupsΓk

are elaborations of thehydra groups

Gk = 〈 a1, . . . , ak, t | t−1a1t = a1, t−1ai t = aiai−1 (∀i > 1) 〉

explored by the second and third authors in [6]. TheseGk are CAT(0), free–by–cyclic,
biautomatic, and can be presented with only one relator, andyet the subgroupsHk :=
〈a1t, . . . , akt〉 are free of rankk and their distortion grows like thek–th of Ackermann’s
functions: DistGk

Hk
≃ Ak.

This extreme distortion stems from a phenomenon which can bedescribed as a re–imagining
of Hercules’ battle with the Lernaean Hydra. Ahydrais a positive wordw on the alphabet
a1, a2, . . .. Hercules removes the first letter and then the creature regenerates in that each
remainingai with i > 1 becomesaiai−1. (Each remaininga1 is unaffected.) This repeats
and Hercules triumphs when the hydra is reduced to the empty word ε. The number of
steps is denotedH(w). (Each step encompasses the removal of the first letter and then
regeneration.) For example,H(a2

3) = 7:

a2
3 → (a2a1)2 → a1a2a1

2 → a2a1
3 → a1

3 → a1
2 → a1 → ε.

In [6] it is shown that Hercules will be victorious whatever hydrahe faces, but the number
of strikes it takes can be huge: the functionsHk, defined byHk(n) = H(ak

n), grow like
Ackermann’s functions:Hk ≃ Ak.

The groupGk is not hyperbolic because it has the subgroup〈a1, t〉 � Z2. We obtainΓk by
combiningGk with another free–by–cyclic group, which is hyperbolic, insuch a way that
the hydra phenomenon persists inΓk, but the troublesome “Euclidean” relationst−1a1t = a1

are replaced by something “hyperbolic.”

In Section2 we will give two presentationsPk and Qk for Γk and will prove they are
equivalent.Pk is well suited to proving hyperbolicity: the associated Cayley 2–complex
will be shown in Section3 to contan no isometrically embedded copies ofR2 and so is
hyperbolic by the Flat Plane Theorem.Qk placesΓk in a class of free–by–cyclic groups
which we show in Section4 (for k ≥ 2) contain free subgroups of rankk+18 and distortion
� Ak. (In the casek = 1, Theorem1.1 is elementary: takeΓ1 to be a free group andΛ1 to
beΓ1.)

1.3. Background. Other heavily distorted free subgroups of hyperbolic groups have been
exhibited by Mitra [12]: for all k, he gives an example with a free subgroup of distortion
like a k–fold iterated exponential function and, more extreme, an example where the num-
ber of iterations grows like logn. Barnard, the first author and Dani developed Mitra’s
constructions into more explicit examples that are also CAT(−1) [3]. We are not aware of
any example of a hyperbolic group with a finite–rank free subgroup of distortion exceed-
ing that of our examples. Indeed, we do not know of a hyperbolic group with afinitely
presentedsubgroup of greater distortion. The Rips construction, applied to a finitely pre-
sentable group with unsolvable word problem yields a hyperbolic (in fact,C′(1/6) small–
cancellation) groupG with a finitely generated subgroupN such that DistGN is not bounded
above by any recursive function, but theseN are not finitely presentable. (See [1, §3.4], [7,
Corollary 8.2], [9, §3, 3.K′′3 ] and [14].)

Whilst we will not call on it in this paper (as we will give the translation between the pre-
sentationsPk andQk explicitly), a result that lies behind how we came to our examples is
that if a 2–complex admits anS1–valued Morse function all of whose ascending and de-
scending links are trees, then its fundamental group is free–by–cyclic [2]. [The ascending
link for our examples is visible in Figure2 as the subgraph made up of all edges connecting
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pairs of negative vertices. The descending is that made up ofall edges connecting pairs of
positive vertices. Both are trees.]

1.4. Towards an upper bound on distortion. It seems likely that DistΓk
Λk
≃ Ak, but we do

not offer a proof that DistΓk
Λk
� Ak. The proof that DistGk

Hk
� Ak in [6] may guide a proof

that DistΓk

Λk
� Ak, but that proof is technical and how to carry it over to DistΓk

Λk
is not readily

apparent. We are content to present here just the lower bound, which we believe is the
more significant.

1.5. Height and quasiconvexity. A finitely generated subgroupH of a finitely generated
groupG is quasiconvexwhen DistGH(n) ≤ Cn for some constantC. An infinite subgroupH
of a groupG hasinfinite heightwhen, for alln, there existg1, . . . , gn such that

⋂n
i=1 gi

−1Hgi

is infinite andHgi , Hg j for all i , j.

AsΛk ≤ Γk, for k ≥ 2, are new examples of non–quasiconvex finitely presented subgroups
of hyperbolic groups, they are test cases for the question attributed to Swarup in [13]: if a
finitely presented subgroupH of a hyperbolic groupG hasfinite height, is H quasiconvex
in G? (We thank Ilya Kapovich for drawing our attention to this.)

OurΛk ≤ Γk do not resolve Swarup’s question as they have infinite heightfor all k ≥ 1. We
explain this using the notation of Section4. It follows from Proposition4.8 that ti ∈ Λk if
and only if i = 0. SoΛkti , Λkt j for all i , j. And

⋂∞
i=1 t−iΛkti is infinite since the rank–l

free group〈b1, . . . , bl〉 is a subgroup oft−iΛkti for all i.

Acknowledgement. We thank an anonymous referee for a careful reading.
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Figure 1. The defining relations of the presentationP6 for Γ6 displayed
as three LOTs and two 2–cells.

2.1. A CAT (0) presentation for Γk. This presentationPk is well suited to establishing
hyperbolicity (see Section3):

generators: α1, . . . , αk, β1, . . . , β8, γ1, . . . , γ8, σ, τ,
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relations:
αi
−1ταi = αi−1 (1 < i ≤ k),

βi
−1τβi = βi+1 (1 ≤ i ≤ 7), β8τβ8

−1 = β1,

γi
−1σγi = γi+1 (1 ≤ i ≤ 7), γ8σγ8

−1 = γ1,

γ3β5 = β3γ5, α1γ1τ = τγ7α1.

It is convenient to encodePk as shown in Figure1 (which displays the casek = 6). Each
edge in the three labelled oriented trees (LOTs—see [10]) encodes a commutator relation—
an edge labelledy from a vertex labelledx to a vertex labelledz corresponds to a relation
y−1xy= z. The square and hexagonal 2–cells represent the remaining two relations,γ3β5 =

β3γ5 andα1γ1τ = τγ7α1.

If one removes theαi and all the relations in which they appear fromPk, then one essen-
tially gets groups studied by Mecham & Muckerjee in [11]. These, in turn, are built from
two copies of groups studied by Barnard and the first author in[2].

2.2. A presentation ofΓk as a free–by–cyclic group.This presentationQk has:

generators: a0, . . . , ak, b1, . . . , b8, c1, . . . , c8, d, t,

relations:

t−1ai t = θ(ai) 0 ≤ i ≤ k, t−1ci t = dψ(c5) ψ(ci) ψ(c5)−1 d−1 (1 ≤ i ≤ 8),
t−1bi t = φ(bi) 1 ≤ i ≤ 8, t−1dt = φ2(b5)−1 d ψ(c5c3

−1) φ(b3),

whereθ, φ andψ are defined by

θ(ai) =



ua1v i = 0,

a0 i = 1,

aiai−1 1 < i ≤ k,

φ(bi) = (bi · · ·b7) b1
−1b8 (1 ≤ i ≤ 8),

ψ(ci) = (ci · · · c8) c1
−1c8 (1 ≤ i ≤ 8),

and

u = t−k c7
−1 t dψ(c5) tk−1,

v = t−(k−1) ψ(c5)−1 d−1 t−1 c1 tk.

Lemma 2.1. Qk presents a free–by–cyclic group

F(a0, a1, . . . , ak, b1, . . . , b8, c1, . . . , c8, d) ⋊ Z

where theZ–factor is〈t〉 and t acts as an automorphism.

Proof. First, note:

(i) u andv represent elements of the subgroup〈b1, . . . , b8, c1, . . . , c8, d〉, and
(ii) φ andψ define automorphisms ofF(b1, . . . , b8) andF(c1, . . . , c8), respectively, as

would θ for F(a0, . . . , ak) wereθ(a0) equal toa1 rather thanua1v.

The action oft by conjugation on

F(a0, a1, . . . , ak, b1, . . . , b8, c1, . . . , c8, d)



HYPERBOLIC HYDRA 5

apparent in the presentationQk is an automorphism because, as we will explain, the fol-
lowing is a sequence of free bases:

(a0,a1, . . . , ak, b1, . . . , b8, c1, . . . , c8, d)
(1)
→ (a1, t

−1a1t, . . . , t−1akt, b1, . . . , b8, c1, . . . , c8, d)
(2)
→ (t−1a0t, t

−1a1t, . . . , t−1akt, b1, . . . , b8, c1, . . . , c8, d)
(3)
→ (t−1a0t, t

−1a1t, . . . , t−1akt, t−1b1t, . . . , t
−1b8t, ψ(c1), . . . , ψ(c8), d)

(4)
→ (t−1a0t, t

−1a1t, . . . , t−1akt, t−1b1t, . . . , t
−1b8t, ψ(c1), . . . , ψ(c8), dψ(c5c3

−1))
(5)
→ (t−1a0t, t

−1a1t, . . . , t−1akt, t−1b1t, . . . , t
−1b8t, t−1c1t, . . . , t−1c8t, dψ(c5c3

−1))
(6)
→ (t−1a0t, t

−1a1t, . . . , t−1akt, t−1b1t, . . . , t
−1b8t, t−1c1t, . . . , t−1c8t, t−1dt).

This is because (1)a1, t−1a1t, . . . , t−1akt is a free basis forF(a0, . . . , ak) as per (ii) above;
(2) t−1a0t = ua1v, which is equivalent via transvections toa1 by (i); (3) follows from (ii);
(4) is via transvections; (5) conjugation byψ(c5)−1 d−1 = ψ(c5)−1ψ(c5c3

−1)ψ(c5c3
−1)−1 d−1

is first conjugation byψ(c5)−1ψ(c5c3
−1), which is an automorphism ofF(c1, . . . , c8), and

then byψ(c5c3
−1)−1 d−1; and (6) is via transvections ast−1b1t, . . . , t−1b8t are a free basis

for F(b1, . . . , b8) andφ2(b5)−1, φ(b3) ∈ F(b1, . . . , b8). �

The subgroupΛk of Theorem1.1will be

〈 a0t, . . . , akt, b1, . . . , b8, c1, . . . , c8, d 〉.

2.3. The equivalence of the presentations.We will prove:

Proposition 2.2. Pk and Qk present the same groups.

As a first step we establish:

Lemma 2.3. Mappingτ 7→ t−1 andβi 7→ t−1bi for 1 ≤ i ≤ 8 defines an isomorphism

〈 β1, . . . , β8, τ | βi
−1τβi = βi+1 (1 ≤ i ≤ 7), β8τβ8

−1 = β1〉

→ F(b1, . . . , b8) ⋊φ Z = 〈 b1, . . . , b8, t | t−1bit = φ(bi) (1 ≤ i ≤ 8) 〉.

Proof. The given map translates the relationsβi
−1τβi = βi+1 (1 ≤ i ≤ 7) andβ8τβ8

−1 = β1

to the family

t−1bit = bi t−1bi+1t (1 ≤ i ≤ 7),

t−1b8t = b−1
1 b8,

which is equivalent tot−1bi t = φ(bi) (1 ≤ i ≤ 8). �

Let P′k andQ′k be the presentation obtained fromPk andQk by removing all the generators
αi andai , respecively, and all the relations in which they occur.

Lemma 2.4. The groups presented by P′k and Q′k are isomorphic via

τ 7→ t−1, βi 7→ t−1bi (1 ≤ i ≤ 8),
σ 7→ s−1, γi 7→ s−1ci (1 ≤ i ≤ 8),

where s= t dψ(c5).
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Proof. As per Lemma2.3, translateβ1, . . . , β8, τ and associated relations tob1, . . . , b8, t
andγ1, . . . , γ8, σ and associated relations toc1, . . . , c8, s .

The given map converts the relationγ3β5 = β3γ5 to

s−1c3t−1b5 = t−1b3s−1c5.

This rearranges as
t−1b5c−5sb3

−1t = c3
−1s

and then as
(t−1b5t) t−1 s(s−1c5

−1s) t (t−1b3
−1t) = s(s−1c3

−1s),

which is equivalent to

φ(b5) t−1 sψ(c5)−1t φ(b3)
−1 = sψ(c3)−1,

and so to
t−1 sψ(c5)−1t = t−1 φ(b5)−1 sψ(c3)−1 φ(b3).

So, ass= t dψ(c5),

t−1 d t = t−1 φ(b5)−1 t dψ(c5)ψ(c3)−1φ(b3),

which gives
t−1 d t = φ2(b5)−1 dψ(c5c3

−1) φ(b3)

as perQ′k. Next, ass= t dψ(c5), the relations−1ci s= ψ(ci) is equivalent to

t−1ci t = dψ(c5)ψ(ci)ψ(c5)−1d−1

as perQ′k. �

Inductively define wordsui andvi for i ≥ 0 by

u0 = αk, ui+1 = ui
−1t−1ui (i ≥ 0),

v0 = ak, vi+1 = vi
−1t−1vi t (i ≥ 0).

The following observation from [6] can be proved by inducting oni.

Lemma 2.5. On substituting an ak for eachαk in ui , the words ui and ti−1vi t−i become
freely equal for all i≥ 1.

Proof of Proposition2.2. By Lemma2.4there is a sequence of Tietze moves carrying the
subpresentationP′k of Pk to Q′k and the remaining relations (those involving theαi) to

α1s−1c1t−1 = t−1s−1c7α1, αi
−1t−1αi = αi−1, 1 < i ≤ k.

A sequence of Tietze moves eliminatingα1, . . . ,αk−1 transforms this family to the single
relation

uk−1s−1c1t−1 = t−1s−1c7uk−1.

Now substitute anak for eachαk. Then, by Lemma2.5, this relation is equivalent to

(tk−2vk−1t−(k−1))s−1c1t−1 = t−1s−1c7 (tk−2vk−1t−(k−1)),

which becomes

t−1vk−1t = (t−(k−1)c7
−1stk−1) vk−1 (t−(k−1)s−1c1tk−1)

on conjugating bytk−1 and rearranging. A sequence of Tietze moves introducingak−1, . . . ,
a1 expands this to the family

t−1a1t = t−(k−1)c7
−1stk−1 a1 t−(k−1)s−1c1tk−1, t−1ai t = aiai−1, 1 < i ≤ k.

The first of these relations becomest−1a1t = a0 when we introducea0 together with the
new relation

a0 = t−(k−1)c7
−1stk−1 a1 t−(k−1)s−1c1tk−1,
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which becomest−1a0t = ua1v on conjugating byt and eliminating thes and s−1 using
s= t dψ(c5). �

3. Hyperbolicity

We establish hyperbolicity using techniques employed in [2] and [11].

Consider the presentation 2–complexKk for Pk assembled from Euclidean unit–squares
associated to each of the defining relations with the single exception ofα1γ1τ = τγ7α1

for which we use a Euclidean hexagon made from one unit–square and two equilateral
triangles as shown in Figure1.

σ+σ− τ+τ−

α+1 α+2 α+3 α+4 α+5 α+6

α−1 α−2 α−3 α−4 α−5 α−6

β+1
β+2

β+3

β+4

β+5
β+6

β+7

β+8

β−1

β−2 β−3

β−4

β−5

β−6β−7

β−8

γ+1
γ+2

γ+3

γ+4

γ+5γ+6

γ+7

γ+8

γ−1

γ−2 γ−3

γ−4

γ−5

γ−6γ−7

γ−8

Figure 2. The link of the vertex in the presentation 2–complex associ-
ated to the presentationP6 for Γ6 given in Section2. The two grey edges
have lengthπ/3, the four green edges have length 5π/6, and all other
edges have lengthπ/2.

The link in the casek = 6 is shown in Figure2. All edges have lengthπ/2 apart from the
edgesτ+—α+1 andτ−—α−1 (shown in grey), which have lengthπ/3, and the edges from
γ+1—τ−, γ+7—α−1 , α+1—γ−1 , andτ+—γ+7 (shown in green), which have length 5π/6. Inspect-
ing the link we see that any simple loop in the graph has lengthat least 2π (separately
considering the cases of monochrome and multicoloured simple loops in Figure1 helps to
check this)—that is, for allk ≥ 1, the link islarge. SoKk satisfies thelink condition(see
[5]) and its universal cover̃Kk is therefore a CAT(0)–space.

To establish thatΓk is hyperbolic we will show that̃Kk contains no subspace isometric to
E

2 and then appeal to the Flat Plane Theorem of [4, 8]. The link of a vertex in any isometric
copy ofE2 in K̃k would appear as a simple loop of length 2π in the link. But inspecting
the link, we find that no edges of lengthπ/3 or 5π/6 (the grey and green edges) occur in
a simple loop of length 2π. Next one can check the edgesγ+3—β−5 , γ−3—β−3 , γ−5 —β+3 and
γ+5—β+5 (the brown edges in the figure) do not occur in a simple loop of length 2π. Then it
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becomes evident that edges occurring in simple loops of length 2π are precisely the edges

τ+—α−i , τ−—α−i (2 ≤ i ≤ k),
τ+—β−i , τ−—β−i (1 ≤ i ≤ 7), τ+—β+8 , τ−—β+8 ,

σ+—γ−i , σ−—γ−i (1 ≤ i ≤ 7), σ+—γ+8 , σ−—γ+8 .

So every corner of every 2–cell in an isometrically embeddedcopy ofE2 must give rise to
one of the edges in this list. But, looking at the defining relations, we see that no 2–cell in
K̃k has this property. Therefore there are no suchE2, and soΓk is hyperbolic.

4. Freeness and distortion

4.1. A family of free–by–cyclic groups. Fix an integerl ≥ 1, wordsu andv onb1, . . . , bl ,
and an automorphismφ of F(b1, . . . , bl). Then, fork ≥ 1, define

Ψk := F(a0, . . . , ak, b1, . . . , bl) ⋊θ Z

whereθ is the automorphism ofF(a0, . . . , ak, b1, . . . , bl) whose restriction toF(b1, . . . , bl)
is φ and

θ(ai) =



ua1v i = 0,

a0 i = 1,

aiai−1 1 < i ≤ k.

Let t denote a generator of theZ–factor, sot−1ai t = θ(ai) andt−1b j t = θ(b j) for all i and j.

The presentationQk in Section2.2showsΓk is an example of such aΨk.

Our aim in the remainder of this section is to establish:

Proposition 4.1. The subgroup

Λk := 〈a0t, . . . , akt, b1, . . . , bl〉

ofΨk is free of rank k+ l + 1 andDistΨk

Λk
� Ak.

4.2. Towards a lower bound on distortion. In what follows, when, for a wordu =
u(a0, . . . , ak, b1, . . . , bl), we refer toθr (u), we mean the freely reduced word that equals
θr (u) in F(a0, . . . , ak, b1, . . . , bl).

The extreme distortion in the hydra groups of [6] stemmed from the battle between Her-
cules and the hydra that we described in Section1. When studyingΨk we will need the
following more elaborate version of that battle. Ahydrais now a word on

a0, a1, . . . , ak, b1, . . . , bl

in which theai only appear with positive exponents. As before, Hercules fights a hydra
by removing the first letter. But in this version, the hydra only regenerates after anai is
removed, and that regeneration is: each remainingai andb j

±1 becomesθ(ai) andθ(b j
±1),

respectively. Again, we consider Hercules victorious if, on sufficient repetition, the hydra
is reduced to the empty word.

Reprising the example from Section1, Hercules defeatsa2
3 as follows:

a2
3 → (a2a1)2 → a0a2a1a0 → a2a1a0ua1v → a0ua1vθ(u)a0θ(v)

→ a0θ(v)θ2(u)ua1vθ
2(v) → a0θ(v)θ3(v) → ε.

—here, the steps in which Hercules removes ab j are not shown; the arrows indicate the
progression from when anai is about to be removed to when anai next appears at the front
of the word or the hydra becomes the empty word.
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The salient point is thata0 and theb j play no essential role in this battle; if we removed all
b j and replaced alla0 by a1, we would have a battle of the original form. Thus we have the
following lemma. [Recall thatH(u) denotes the duration of the battle (of the original type
from Section1 and [6]) against the hydrau.]

Lemma 4.2. Hercules wins against all hydra w and, in the battle, the number of times he
removes an ai equalsH(w) wherew is the word obtained from w by removing all bj

±1 and
replacing all a0 by a1.

Consideration of the original battle between Hercules and the hydra led to the result that,
for all k, n ≥ 1, there is a positive worduk,n = uk,n(a1t, . . . , akt) of lengthHk(n) that
equalsak

ntHk(n) in Gk. (This is Lemma 5.1 in [6].) The reason is that the pairing off of a
t with an initial ai in a positive word ona1, . . . , ak corresponds to a decapitation, and the
conjugation byt that moves thatt into place from the right–hand end causesregeneration
for the remainder of the word. For exampleH2(3) = 7 and

a2
3t7 = (a2t) t−1a2

2t t6 = (a2t) (a2a1)2 t6 = (a2t)(a2t) t−1a1a2a1t t5

= · · · = (a2t)(a2t)(a1t)(a2t)(a1t)(a1t)(a1t) = u2,3.

In the corresponding calculation forΨk, only theai get paired witht, and on each of the
Hk(n) times that happens, the subsequent conjugation byt can increase length by a factor
C which depends only onφ, ℓ(u) andℓ(v). So:

Lemma 4.3. There exists C> 0 such that for all k, n ≥ 1, there is a wordûk,n =

ûk,n(a0t, . . . , akt, b1, . . . , bl) that equals akntHk(n) in Ψk and has the properties that

Hk(n) ≤ ℓ(ûk,n) ≤ CHk(n)n

and all the(ait) it contains have positive exponents.

This and our next two lemmas will be components of a calculation that will yield Propo-
sition 4.6 (the analogue of Proposition 5.2 in [6]), which will be the key to establishing a
lower bound on the distortion ofΛk in Ψk.

A simple calculation yields:

Lemma 4.4. t−ma1tm+1 = τm in Ψk for all m ≥ 1 where

τm :=



a0t for m= 1

φm−2(u) · · ·φ2(u)u (a1t) φ(v)φ3(v) · · ·φm−1(v) for even m≥ 2

φm−2(u) · · ·φ3(u)φ(u) (a0t) φ2(v)φ4(v) · · ·φm−1(v) for odd m> 2.

This combines with

t−1(a1t−1)n = (t−1a1t2) (t−3a1t4) (t−5a1t6) · · · (t1−2na1t2n)t−2n−1

to give:

Lemma 4.5. There is a constant C> 0, depending only onφ, ℓ(u) andℓ(v), such that for
all n ≥ 0, there is a word vn = vn(a0t, b1, . . . , bl) such that t−1(a1t−1)n = vnt−2n−1 in Ψk, the
number of(a0t) contained in vn is n and all have positive exponent, and n≤ ℓ(vn) ≤ Cn.

Proposition 4.6. For all k ≥ 2 and n ≥ 1, there is a reduced word of length at least
2Hk(n) + 3 on a0t, a1t, . . . , akt, b1, . . . , bl , that equals akna2ta1a2

−1ak
−n in Ψk.

Proof. After rewriting the relationt−1a2t = a2a1 asa2
−1ta2 = ta1

−1, we seea2
−1tHk(n)a2 =

(ta1
−1)Hk(n). So

ak
na2 = ûk,na2(ta1

−1)−Hk(n)
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for ûk,n as in Lemma4.3. This gives the first of the equalities

ak
na2ta1a2

−1ak
−n = ûk,na2(ta1

−1)−Hk(n)ta1(ta1
−1)Hk(n)a2

−1ûk,n
−1

= ûk,n(a2t) t−1(ta1
−1)−Hk(n)ta1(ta1

−1)Hk(n)t (a2t)
−1ûk,n

−1

= ûk,n(a2t) vHk(n)t
−2Hk(n)−1ta1t2Hk(n)+1vHk(n)

−1 (a2t)−1ûk,n
−1

= ûk,n(a2t) vHk(n)τ2Hk(n)vHk(n)
−1 (a2t)−1ûk,n

−1.

The second is a free equality and the third and fourth are applications of Lemmas4.5and
4.4, respectively.

This calculation arrives at a word ona0t, a1t, . . . , akt, b1, . . . , bl , that equalsak
na2ta1a2

−1ak
−n

inΨk. This word may not be freely reduced, but if we delete all theb j
±1 it contains, replace

all a0
±1 by a1

±1, and then freely reduce (i.e. cancel away all (ai t)±1(ai t)∓1 subwords), we
getuk,n (a2t) (a1t) (a2t)−1 uk,n

−1, which has length 2Hk(n) + 3. �

4.3. Freeness and rank.The result of this section is:

Proposition 4.7. The subgroupΛk is free of rank k+ l + 1.

It will be convenient to prove more. In the special case wherew represents the identity,
the following proposition tells us that there are no non–trivial relations betweena0t, . . . ,
akt, b1, . . . , bl and so establishes Proposition4.7.

Proposition 4.8. If w = w(a0t, . . . , akt, b1, . . . , bl) represents an element of the subgroup
〈t〉 in Ψk, then w freely equals the empty word.

We begin with an observation on how the groupsΨk nest.

Lemma 4.9. For 1 ≤ i ≤ k, the canonical homomorphismΨi → Ψk is an inclusion.

Proof. The free–by–cyclic normal forms—a reduced word ona0, . . . , ak, b1, . . . , bl times a
power oft—of an element ofΨi and its image inΨk are the same. �

We will prove Proposition4.8 by induction, but first we give a corollary which will be
useful in the induction step. We emphasise that when we say thatv(a0t, . . . , akt, b1, . . . , bl)
is freely reducedin the following, we mean that there are no (ait)±1(ait)∓1 or b j

±1b j
∓1

subwords.

Corollary 4.10. Suppose v(a0t, . . . , akt, b1, . . . , bl) is a freely reduced word equallinĝvts

in Ψk where s∈ Z andv̂ = v̂(a0, . . . , ak, b1, . . . , bl) is a word in which all the ai that occur
have positive exponents. Then all the(ait) in v have positive exponents.

Proof. When played out against ˆv(a0, . . . , ak, b1, . . . , bl), the hydra battle described prior to
Lemma4.2gives a wordv′ = v′(a0t, . . . , akt, b1, . . . , bl) and an integers′ such thatv′ = v̂ts

′

in Ψk. Moreover, the exponents of all the (ait) in v′ are positive. Now,v−1v′ ∈ 〈t〉 since
v̂ = vt−s = v′t−s′ , and sov and v′ are freely equal by Proposition4.8. Therefore the
exponents of all the (ait) in v are positive. �

Proof of Proposition4.8. We induct onk. For the base case ofk = 1, notice that defining
a0 := a0t anda1 := a1t, we can transform the presentation

〈 a0, a1, b1, . . . , bl , t | t−1a0t = ua1v, t−1a1t = a0, t−1b jt = φ(b j) ∀ j 〉

for Ψ1 to

〈 a0, a1, b1, . . . , bl , t | t−1a0t = ua1φ(v), t−1a1t = a0, t−1b jt = φ(b j) ∀ j 〉,
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which is an alternative means of expressingΨ1 as a free–by–cyclic group from which the
result is evident.

For the induction step, we consider a freely reduced wordw = w(a0t, . . . , akt, b1, . . . , bl)
representing an element of〈t〉 in Ψk wherek ≥ 2. If no (akt)±1 are present inw we can
deduce from the induction hypothesis and Lemma4.9 thatw freely reduces to the empty
word. For the remainder of our proof we suppose there are (akt)±1 present, and we seek a
contradiction.

Consider shuffling thet±1 to the start ofw using the defining relations—replacing eachai

andb j passed by at±1 with θ±1(ai) andθ±1(b j), respectively. The result will be a power oft
times a word ona0, . . . , ak, b1, . . . , bl which freely reduces to the empty word. Such isθ, no
ak are created or destroyed in this process of shuffling thet±1. So there is some expression
w0(akt)±1u(akt)∓1w1 for w such thatu = u(a0t, . . . , ak−1t, b1, . . . , bl) and theak

±1 andak
∓1

in the (akt)±1 and (akt)∓1 buttressingu cancel after the shuffling and free reduction.

We will address first the casew = w0(akt)−1u(akt)w1. Break down the shuffling process
by first shuffling thet±1 out of w0, u andw1, and then carrying the resulting powers to the
front of the word:

w = w0 (akt)−1 u (akt) w1 → tr0 ŵ0 (akt)−1 tr û (akt) tr1 ŵ1

→ tr0+r+r1 θr+r1 (ŵ0) θr+r1+1(ak
−1) θr1+1(û) θr1+1(ak) ŵ1

wherer0, r, r1 ∈ Z and

ŵ0 = ŵ0(a0, . . . , ak, b1, . . . , bl),

û = û(a0, . . . , ak−1, b1, . . . , bl),

ŵ1 = ŵ1(a0, . . . , ak, b1, . . . , bl)

are words such thattr0ŵ0 = w0, tr û = u andtr1ŵ1 = w1 in Ψk. When we expandθr+r1(ak
−1)

andθr1+1(ak) as words ona0, . . . , ak, the former ends with anak
−1 which must cancel with

theak at the start of the latter. Soθr1+1(û), and therefore ˆu, freely equal the empty word.
Sou represents an element of〈t〉 and, by induction hypothesis, freely reduces to the empty
word, contrary to the initial assumption thatw(a0t, . . .akt, b1, . . . , bl) is reduced.

In the casew = w0(akt)u(akt)−1w1, the shuffling process is

w = w0 (akt) u (akt)−1 w1 → tr0 ŵ0 (akt) tr û (akt)−1 tr1 ŵ1

→ tr0+r+r1 θr+r1 (ŵ0) θr+r1(ak) θr1−1(û) θr1(ak
−1) ŵ1

wheretr0ŵ0 = w0, tr û = u andtr1ŵ1 = w1 in Ψk, as before. The first and last letters of
θr+r1(ak) θr1−1(û) θr1(ak

−1) areak andak
−1 which cancel, so this subword must freely reduce

to the empty word. Soθr (ak) θ−1(û) ak
−1 also freely reduces to the empty word—that is,

θr+1(ak) û freely equalsakak−1.

If r = 0 then this says that ˆu freely equals the empty word and, as before, we have a
contradiction. Supposer > 0. Thenû−1 = (akak−1)−1θr+1(ak) would be a positive word
on a0, . . . , ak−1 were we to remove all theb1

±1, . . . , bl
±1 it contains. So, as ˆu−1t−r = u−1,

Corollary4.10applies and tells us thatu−1 would be a positive word were we to remove
all theb1

±1, . . . , bl
±1 it contains. Butr is the exponent sum of the (a0t)±1, . . . , (ak−1t)±1 in

u, and so we deduce the contradictionr ≤ 0. Finally we note that the caser < 0 also leads
to a contradiction because if we replacew by w−1 it becomes the caser > 0. �

4.4. Conclusion. We deduce from Proposition4.8that the word posited in Proposition4.6
is theuniquereduced word ona0t, . . . , akt, b1, . . . , bl that equalsak

na2ta1a2
−1ak

−n in Ψk.
This establishes that DistΨk

Λk
� Hk for all k ≥ 2. So, by Proposition 1.2 in [6], which says
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thatHk ≃ Ak for all k ≥ 1, we have DistΨk

Λk
� Ak for all k ≥ 2. Added to Proposition4.7,

this completes the proof of Proposition4.1.

Proposition4.1applies to the subgroup

〈 a0t, . . . , akt, b1, . . . , b8, c1, . . . , c8, d 〉

of Γk (presented asQk of Section2) and so, as we establishedΓk to be hyperbolic in
Section3, Theorem1.1is proved.
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