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Abstract. This note provides an alternate account of Calegari’s rationality
theorem for stable commutator length in free groups.

1. Introduction

The purpose of this note is to provide an alternate account of Calegari’s main
result from [4], establishing the existence of extremal surfaces for stable commutator
length in free groups, via linear programming. The argument presented here is
similar to that given in [4], except that we avoid using the theory of branched
surfaces. Instead, the reduction to linear programming is achieved directly, using
the combinatorics of words in the free group. We note that the specific linear
programming problem resulting from the discussion here essentially agrees with
that described in Example 4.34 of [3].
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2. Preliminaries

We start by giving a working definition of stable commutator length. Proposi-
tions 2.10 and 2.13 of [3] show that it is equivalent to the basic definition in terms
of commutators or genus.

Definition 1. Let G = π1(X) and suppose γ : S1 → X represents the conju-
gacy class of a ∈ G. The stable commutator length of a is given by

(1) scl(a) = inf
S

−χ(S)

2n(S)

where S ranges over all singular surfaces S → X such that

• S is oriented and compact with ∂S 6= ∅
• S has no S2 or D2 components
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• the restriction ∂S → X factors through γ; that is, there is a commutative
diagram:

∂S −−−−→ S




y





y

S1 γ
−−−−→ X

• the restriction of the map ∂S → S1 to each connected component of ∂S
is a map of positive degree

and where n(S) is the total degree of the map ∂S → S1 (of oriented 1–manifolds).

A surface S satisfying the conditions above is called a monotone admissible

surface in [3], abbreviated here as an admissible surface. Such a surface exists if
and only if a ∈ [G, G]. If a 6∈ [G, G] then by convention scl(a) = ∞ (the infimum
of the empty set).

A surface S → X is said to be extremal if it realizes the infimum in (1). Notice
that if this occurs, then scl(a) is a rational number.

3. Singular surfaces in graphs

Let X be a graph with oriented 1–cells {eν}. These edges may be formally
considered as a generating set for the fundamental groupoid of X based at the
vertices. These generators also generate the fundamental group F of X . Note
that F is free, but the groupoid generators are not a basis unless X has only one
vertex. (The reader may assume this latter property with no harm, in which case
the fundamental groupoid is simply the fundamental group.)

Let γ : S1 → X be a simplicial loop with no backtracking. There is a corre-
sponding cyclically reduced word w = x1 · · ·xℓ in the fundamental groupoid gener-
ators and their inverses. This word w represents a conjugacy class in π1(X), which
we assume to be in [F, F ]. Finally, let S → X be an admissible surface for w, as in
Definition 1.

We are interested in computing χ(S) and n(S), to estimate scl(w) from above.

We are free to modify S if the resulting surface S′ satisfies −χ(S′)
2n(S′) 6

−χ(S)
2n(S) , since

this only strengthens the estimate.
Using transversality, the map S → X can be homotoped into a standard form,

sometimes called a transverse map [2]. The surface is decomposed into pieces
called 1–handles, which map to edges of X , and complementary regions, which
map to vertices of X . Each 1–handle is a tubular neighborhood of a connected
1–dimensional submanifold, either an arc with endpoints on ∂S or a circle. The
submanifold maps to the midpoint of an edge of X , and the fibers of the tubular
neighborhood map over the edge, through its characteristic map. In particular,
the boundary arcs or circles of the 1–handle (comprised of endpoints of fibers)
map to vertices of X . A transverse labeling is a labeling of the fibers of 1–handles
by fundamental groupoid generators, indicating which edge of X (and in which
direction) the handle maps to. For more detail on putting maps into this form, see
for instance [6, 7, 5, 1].

Let S0 ⊂ S be the codimension-zero submanifold obtained as the closure of the
union of a collar neighborhood of ∂S and the 1–handles that meet ∂S. We will
see that S0 is the essential part of S, containing all of the relevant information. It
is determined completely by ∂S, together with the additional data of which pairs
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of edges in ∂S are joined by 1–handles. Note that ∂S0 consists of ∂S together
with additional components in the interior of S. These latter components will be
called the inner boundary of S0, denoted ∂−S0. Let S1 be the closure of S − S0.
Note that ∂S1 = S1 ∩ S0 = ∂−S0. Figure 1 shows an example of S0 for the word
w = aba−1b−1. (The “turns” mentioned there are discussed in the next section.)

1 2 3 4 1 2 3 4 1 2 3 4

a b

∂−S0

∂S
w3 −→

α

Figure 1. One possible S0 for the word w = aba−1b−1, with outer
boundary w3. There are four turns, indicated by the numbers, each
occurring three times. The boundary arc α leads from turn 2 to
turn 3. This surface leads to an estimate scl(w) 6 1/2 (and in fact
is extremal).

How large can χ(S) be? Note that χ(S) = χ(S0)+χ(S1) since S0 and S1 meet
along circles. Also,

χ(S0) =
−n(S) |w|

2
as can be seen by counting the 1–handles meeting ∂S: each 1–handle contributes
−1 to χ(S0) and occupies two edges in ∂S, of which there are n(S) |w| in total.
Finally, given S0, the quantity χ(S1) is largest when S1 is a collection of disks.
The number of disks is simply the number of components of ∂−S0. We can always
replace S1 by disks, since each component of ∂S1 maps to a vertex of X and disks
can be mapped to vertices also. Thus, after this modification, we have

(2) χ(S) =
−n(S) |w|

2
+

∣

∣π0(∂
−S0)

∣

∣ ,

and therefore an upper bound for scl(w) is given by

(3)
−χ(S)

2n(S)
=

|w|

4
−

|π0(∂
−S0)|

2n(S)
.

Indeed, scl(w) is precisely the infimum of the right hand side of (3) over all surfaces
S0 arising as above. (Note that n(S) is determined by S0.) Equation (3) essentially
replaces the quantity χ(S) by the number of inner boundary components of S0 in
the computation of scl(w).

4. The turn graph

To help keep track of the inner boundary ∂−S0, we define the turn graph.
Consider the word w = x1 · · ·xℓ. A turn in w is a position between two letters of
w considered as a cyclic word. Thus there are |w| = ℓ turns. Each turn is labeled
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by the length two subword xixi+1 (or xℓx1) of w which straddles the turn. Note
that turns are not necessarily determined by their labels.

The turn graph Γ(w) is a directed graph with vertices equal to the turns of w,
and with a directed edge from turn i to turn j if x−1

i = xj+1. That is, if the label
of a turn begins with the letter a±1, then there is a directed edge from this turn
to every other turn whose label ends with a∓1. Note that because w is cylically
reduced, Γ(w) has no loops.

The turn graph has a two-fold symmetry, or duality: if e ∈ Γ(w) is an edge
from turn i to turn j, then one verifies easily that there is also an edge ē from turn
j + 1 to turn i − 1, and moreover ¯̄e = e. Figure 2 shows a turn graph and a dual
edge pair.

ab
ba

ab

bā

āb̄

b̄a
ab̄

b̄ā

āb

bā

āb̄

b̄a

1

2

3

4

5

6

7

8

9

10

11

12

Figure 2. The turn graph for the word w = ababāb̄ab̄ābāb̄ (bar
denotes inverse). The highlighted edges form a dual pair.

Turn circuits. Given the surface S0, each inner boundary component can be
described as follows. Traversing the curve in the positively oriented direction, one
alternately follows 1–handles and visits turns of w positioned along ∂S; see again
Figure 1 (this situation is the reason for the word “turn”). If a 1–handle leads from
turn i to turn j, then the 1–handle bears the transverse label x−1

i = xj+1, and so
there is an edge in Γ(w) from turn i to turn j. The sequence of 1–handles traversed
by the boundary component therefore yields a directed circuit in Γ(w). In this way
the inner boundary ∂−S0 gives rise to a finite collection (possibly with repetitions)
of directed circuits in Γ(w), called the turn circuits for S0.

Recall that ∂S is labeled by wn(S) (possibly spread over several components),
so there are n(S) occurrences of each turn on ∂S. The turn circuits do not contain
the information of which particular instances of turns are joined by 1–handles.

Turn surgery. There is a move one can perform on S0 which is useful. Given
two occurrences of turn i in S0, cut the collar neighborhood of ∂S open along arcs
positioned at the two turns, between the adjacent 1–handles; see Figure 3. These
arcs both map to the same vertex of X . Now re-glue the four sides of the arcs,
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xi

xi xi+1

xi+1

∂−S0

∂S

∂S

Figure 3. Cutting along two instances of turn i.

switching two of them. There is one way to do this which preserves orientations of
S and of ∂S0. The new surface is still admissible (that is, after capping off ∂−S0)
and n(S) is preserved.

The move changes both ∂S and ∂−S0, in each case either increasing or de-
creasing the number of connected components by one. If both instances of the turn
occupy the same component, then the move splits this component into two, with
each occupied by one of the turns. Otherwise, the move joins the two components
occupied by the turns into one.

Definition 2. An admissible surface S is taut if every component of ∂−S0

visits each turn at most once. In terms of the turn graph, this means that every
turn circuit for S0 is embedded in Γ(w). Let T (w) be the set of taut admissible
surfaces for w.

Any admissible surface S can be made taut by performing a finite number of
turn surgeries, each increasing the number of inner boundary components of ∂S0.
Since n(S) remains constant, the quantity (3) will only decrease. Hence we have
the following result:

Lemma 3. There is an equality

scl(w) = inf
S∈T (w)

|w|

4
−

|π0(∂
−S0)|

2n(S)
.

5. Weight vectors and linear optimization

Let {α1, . . . , αk} be the set of embedded directed circuits in Γ(w). For each
taut admissible surface S let ui(S) be the number of occurrences of αi among
the turn circuits of S0, and let u(S) ∈ Rk be the non-negative integer vector
(u1(S), . . . , uk(S)). We call u(S) the weight vector for S.

For each vertex v and edge e of Γ(w), there are linear functions

Fv : Rk → R, Fe : Rk → R

whose values on the ith standard basis vector (0, . . . , 0, 1, 0, . . .0) are given by the
number of times αi passes through the vertex v (respectively, over the edge e).
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Since αi is embedded, these numbers will be 0 or 1, although this is not important.
For the taut surface S, if e ∈ Γ(w) is an edge from turn i to turn j, then Fe(u(S))
counts the number of times ∂−S0 follows a 1–handle from turn i to turn j. Similarly,
if v ∈ Γ(w) is turn i, then Fv(u(S)) counts the number of occurrences of turn i on
∂−S0 (which is n(S), as observed earlier).

Remark 4. For taut admissible surfaces, the functions |π0(∂
−S0)| and n(S)

both factor as
T (w)

u
−→ Rk −→ R

where the second map is linear, with integer coefficients. In the case of |π0(∂
−S0)|

the second map is given by (u1, . . . , uk) 7→
∑

i ui, and in the case of n(S), the
second map is simply Fv (for any vertex v ∈ Γ(w)).

By (2) it follows that the function −χ(S) also factors as above, through an
integer coefficient linear function Rk → R.

Lemma 5. Every weight vector u(S) satisfies the linear equation

Fe(u(S)) = Fē(u(S))

for every dual pair e, ē of edges in Γ(w).

Proof. Suppose e leads from turn i to turn j (so ē leads from turn j + 1 to
turn i − 1). If a 1–handle has a boundary arc representing e then the other side of
the 1–handle represents ē. Hence both sides of the equation count the number of
1–handles of S0 joining occurrences of xi and xj+1 in ∂S. �

This lemma has a converse:

Proposition 6. If u ∈ Rk −{0} has non-negative integer entries and satisfies

the linear equations

(4) Fe(u) = Fē(u) for all dual pairs e, ē

then u is the weight vector of a taut admissible surface.

Proof. Suppose u = (u1, . . . , uk). For each i let Di be a polygonal disk with
|αi| sides. Label the oriented boundary of Di by the edges and vertices of αi.
That is, sides are labeled by edges of Γ(w), and corners are labeled by turns. Note
that there are no monogons, since Γ(w) has no loops. To form the taut admissible
surface S, take ui copies of Di for each i. For each dual edge pair e, ē the total
number of edges labeled e among the Di’s will equal the number of edges labeled
ē, by (4). Hence the sides of the disks can be joined in dual pairs to form a closed
oriented surface.

However, this is not how S is formed. Instead, whenever two disks were to be
joined along sides labeled e and ē, insert an oriented rectangle, with sides labeled by
e, xj+1, ē, xi (here, e leads from turn i to turn j, and ē from turn j+1 to turn i−1).
See Figure 4. The opposite sides labeled by e and ē are joined to the appropriate
sides of the disks, and the remaining two sides become part of the boundary of S.
Each rectangle can be transversely labeled by a fundamental groupoid generator
(equal to x−1

i = xj+1), and then the rectangles become 1–handles in the resulting
surface S.

Note that the side of a rectangle labeled xi has neighboring polygonal disk
corners labeled i − 1 and i. Following this edge along ∂S, the next edge must be
labeled xi+1 (adjacent to i and i + 1); see again Figure 4. Hence each component
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∂S
e ē

xj+1

xi

xi+1

∂S

∂S

i
i − 1

j + 1j

i + 1

Figure 4. Building S from (u1, . . . , uk).

of ∂S is labeled by a positive power of w. There are no S2 components since no
component of S is closed, and no D2 components, since an outermost 1–handle on
such a disk would have to bound a monogon. The map S → X is defined on the
rectangles according to the transverse labels (each maps to an edge of X) and the
disks map to vertices. Now S is admissible, and by construction, the turn circuits
will all be instances of the circuits αi, so S is taut. �

Theorem 7 (Calegari). If X is a graph and a ∈ [π1(X), π1(X)] then there ex-

ists an extremal surface S → X for a. Moreover, there is an algorithm to construct

S. In particular, scl(a) is rational and computable.

Proof. Let w be the cyclically reduced word representing the conjugacy class

of a, as defined in Section 3. By Remark 4 the function −χ(S)
2n(S) factors as

T (w)
u

−→ Rk−→R

where the second map is a ratio of linear functions A(u)/B(u) with integer coef-
ficients. Let P ⊂ Rk be the polyhedron defined by the (integer coefficient) linear
equations (4) and the inequalities B(u) > 0 and ui > 0, i = 1, . . . , k. Lemma 5 and
Proposition 6 together imply that the image of u : T (w) → Rk is precisely P ∩Zk.
Hence

scl(w) = inf
u∈P∩Zk

A(u)/B(u).

Note that P and A(u)/B(u) are projectively invariant. Normalizing B(u) to be 1,
we have

(5) scl(w) = inf
u∈P ′∩Qk

A(u)

where P ′ is the rational polyhedron P ∩ B−1(1). Note that P ′ is a closed set.
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From Remark 4 and equation (2) the function A is given by

A(u) =
|w|

2
Fv(u) +

∑

i

ui ,

which has strictly positive values on the standard basis vectors. Hence A achieves
a minimum on P ′, along a non-empty rational sub-polyhedron. The vertices of
this sub-polyhedron are rational points realizing the infimum in (5). Hence there
exist extremal surfaces for w, and scl(w) is rational. An extremal surface can be
constructed explicitly from a rational solution u ∈ P ′ ∩ Qk, by first multiplying
by an integer to obtain a minimizer for A(u)/B(u) in P ∩ Zk, and then applying
the procedure given in the proof of Proposition 6. Lastly, we note that from the
word w it is straightforward to algorithmically construct the turn graph Γ(w), the
equations (4), and the polyhedron P ′. �
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