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ABSTRACT. We construct CAT(0) groups containing subgroups whose Dehn func-

tions are given by xs , for a dense set of numbers s ∈ [2,∞). This significantly expands

the known geometric behavior of subgroups of CAT(0) groups.

1. INTRODUCTION

In this paper we are concerned with the geometry of subgroups of CAT(0) groups.
Such subgroups need not be CAT(0) themselves, and in fact this realm includes many
instances of exotic or unusual group-theoretic behavior. For example, there exist
finitely presented subgroups of CAT(0) groups having unsolvable membership and
conjugacy problems [BBMS00, Bri13], or possessing infinitely many conjugacy classes
of finite subgroups (implicitly in [FM91], explicitly in [LN03, BCD08]). Many well
known examples of groups having interesting homological properties, such as the
Stallings–Bieri groups or other Bestvina–Brady kernels, arise naturally as subgroups
of CAT(0) groups.

Regarding the geometry, specifically, of subgroups of CAT(0) groups, only a few
types of unusual behavior have been observed to date. One common feature to all
subgroups of CAT(0) groups is that cyclic subgroups are always undistorted. This
constraint immediately rules out a great many examples from being embeddable into
CAT(0) groups. The examples found so far with interesting geometric properties have
been constructed using fairly sophisticated techniques. Such examples include the
hydra groups of [DR13], which are CAT(0) groups possessing free subgroups with ex-
treme distortion; subgroups of CAT(0) groups having exponentional or polynomial
Dehn functions [BBMS97, Bri13], [BRS07, ABD+13, BGL11]; and subgroups of CAT(0)
groups having different homological and ordinary Dehn functions [ABDY13].

Our goal in the present paper is to construct CAT(0) groups containing subgroups
that exhibit a wide range of isoperimetric behavior. Our main theorem is the follow-
ing.

Theorem A. Let m,n be positive integers such that α= n logm(1+p
2) Ê 1. Then there

exists a 6–dimensional CAT(0) group G which contains a finitely presented subgroup S
whose Dehn function is given by δS(x) = x2α.
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Varying m and n, the resulting isoperimetric exponents 2α form a dense set in the
interval [2,∞). Thus, the isoperimetric spectrum of exponents arising from subgroups
of CAT(0) groups resembles, in its coarse structure, that of finitely presented groups
generally [BB00].
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The group S in the main theorem is constructed with reference to certain parame-
ters; it is denoted ST,n where T is a finite tree and n is an integer. It will embed into a
CAT(0) group denoted GT,n .

Comparison with prior constructions of snowflake groups. The construction of the
snowflake groups ST,n builds on the methods used in [BBFS09] to construct groups
with specified power functions as Dehn functions. The latter groups do not embed
into any CAT(0) group, for the simple reason that they contain distorted cyclic sub-
groups. The same is true for the groups constructed in [SBR02], and many other
groups having interesting Dehn functions. Indeed, it is the presence of precisely
distorted cyclic subgroups that enables the computation of the Dehn functions in
[BBFS09] in the first place.

The basic structure of the groups in [BBFS09] is that of a graph of groups, with ver-
tex groups of cohomological dimension 2, and infinite cyclic edge groups. The lower
bound for the Dehn function was easy to establish, using asphericity of the presen-
tation 2–complex. The distortion of the cyclic edge groups was then precisely de-
termined, and this distortion estimate led to a matching upper bound for the Dehn
function of the ambient group.

If one hopes to embed examples into CAT(0) groups, one cannot have distorted
cyclic subgroups. The groups ST,n we construct here are fundamental groups of graphs
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of groups in which the edge groups are free groups of rank 2. Moreover, the vertex
groups are groups of cohomological dimension 3, and therefore ST,n does not ad-
mit an aspherical presentation. For this reason, establishing the lower bound for the
Dehn function of ST,n requires some effort.

The change to free edge groups introduces some major challenges. In [BBFS09],
given any element of an edge group, conjugation by the appropriate stable letter re-
sulted in a word r times longer, for a uniform factor r . In the Cayley 2–complex, each
edge space had a well defined long side and short side. A key geometric property was
that no geodesic could pass from the short side to the long side of any edge space,
and back again. It thus became possible to determine the large scale behavior of
geodesics, which in turn led to very explicit distance estimates in the group.

In the groups ST,n defined here, the edge groups have monodromy modeled on a
hyperbolic free group automorphism. Under this automorphism, some words get
longer and some get shorter. It is no longer possible to constrain the behavior of
geodesics relative to the Bass-Serre tree for the graph of groups structure as in [BBFS09].
This local stretching and compressing behavior of the automorphism is a phenome-
non that was similarly faced in the work of Bridson and Groves in [BG10]. To accom-
modate this behavior, we rely on a coarser and more robust approach. We begin with
the framework used in [BB00], and develop additional techniques for handling the
lack of local control over geodesics. These ideas are described in more detail in the
subsection “Edge group distortion” near the end of this Introduction.

The embedding trick. The method we use for embedding ST,n into a CAT(0) group
is based on a twisting phenomenon for graphs of groups. Suppose α : Ge → Gv is
the inclusion map from an edge group to a vertex group, where e is incident to v .
If one replaces α by ϕ ◦α, where ϕ is an automorphism of α(Ge ), then typically one
obtains a very different fundamental group. However, ifϕ is the restriction of an inner
automorphism of Gv , then the fundamental group remains unchanged.

The graph of groups structure of the group ST,n incorporates in an essential way
the “twisting automorphisms” ϕ just described; properties of these automorphisms
influence strongly the geometry of ST,n . The presence of twisting accounts for the lack
of non-positive curvature and the possibility of larger-than-quadratic isoperimetric
behavior.

In order to embed ST,n into a larger group GT,n , we give the latter the structure
of a graph of groups that is very similar to that of ST,n . It has the same underlying
graph, somewhat larger edge and vertex groups, and inclusion maps which make
use of twisting automorphisms closely related to those in ST,n . This is to ensure
the existence of a morphism of graphs of groups which induces a homomorphism
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ST,n →GT,n . Injectivity of this homomorphism is established using a criterion due to
Bass [Bas93]; see Lemma 5.1.

The basic trick now is that the vertex group in GT,n has been enlarged specifically
to arrange that the twisting automorphisms become inner. Thus the twisting can be
undone, without changing the fundamental group. With no twisting, it becomes a
simple matter to put a CAT(0) structure on GT,n , provided the enlarged vertex group
is already CAT(0).

Bieri doubles and the embedding trick. Earlier we referred to examples of subgroups
of CAT(0) groups having exponentional or polynomial Dehn functions. The examples
from [BBMS97, BRS07] made use of an embedding theorem from [BBMS97]. The au-
thors embed certain doubles of groups into the direct product of a related group and
a free group; the latter product may then have a CAT(0) structure, while the embed-
ded subgroup has interesting geometric behavior. The embedded subgroup is called
a Bieri double.

It turns out that some instances of this method can be viewed as instances of the
embedding trick discussed above, resulting in an alternative way of looking at certain
Bieri doubles.

Here is an example, which includes the [BRS07] examples of subgroups of CAT(0)
groups having polynomial Dehn functions. Let N be any group with an automor-
phism ϕ, and consider the double of N oϕZ along N : (N o 〈t1〉)∗N (N o 〈t2〉). There
is a homomorphism

(N o 〈t1〉)∗N (N o 〈t2〉) → (N o 〈t〉)×〈u, v〉

which sends N to N , t1 to tu, and t2 to t v . The arguments of [BBMS97] show that this
map is an embedding.

An alternative viewpoint is to note that the double (N o 〈t1〉)∗N (N o 〈t2〉) has a
graph of groups decomposition A with underlying graph a figure-eight, with all edge
and vertex groups N , and with monodromy along each loop given byϕ. The elements
t1 and t2 are the two stable letters. The larger group (N o 〈t〉)× 〈u, v〉 has a similar
decomposition with the same underlying graph, with vertex and edge groups N o〈t〉,
with monodromy the identity. In this case u and v are the two stable letters.

This description of the larger group is the “untwisted” presentation for it. If we
change the monodromy to be by the automorphism ϕ× id of N o 〈t〉, then the new
graph of groups B still has fundamental group (N o 〈t〉)×〈u, v〉, since ϕ× id is con-
jugation by t in the vertex group N o 〈t〉. The two stable letters for this new decom-
position are tu and t v . There is an obvious morphism of graphs of groups A → B
since ϕ× id restricts to ϕ on N . The induced map on fundamental groups is exactly
the embedding displayed above.
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An overview of the construction. Recall that our basic aim is to construct a pair of
finitely presented groups S and G such that G is CAT(0), S embeds into G , and S has a
specified Dehn function. The starting data needed for our constructions is as follows.

First choose a palindromic monotone automorphism ϕ : 〈x, y〉 → 〈x, y〉 (see Sec-
tion 2 for these notions). Let λ be the Perron-Frobenius eigenvalue of the transition
matrix of ϕ. Also let T be a finite tree with valence at most 3, and let m = |T | + 1
(here, |T | denotes the number of vertices of T ). Choose a positive integer n such that
α = n logm(λ) Ê 1. Based on these choices, we define finitely presented groups ST,n

and GT,n .
These groups are multiple HNN extensions of groups VT and WT respectively, with

m stable letters. In Section 3 we define these vertex groups; they are, themselves,
fundamental groups of graphs of groups with underlying graph T . The group VT ,
in particular, is required to have some very special properties, notably the balancing
property. The structure needed to achieve this property also dictates how WT should
be constructed.

Briefly, VT has vertex groups isomorphic to F2 ×F2 ×F2, and each such group has
three designated peripheral subgroups which are used as edge groups; these edge
groups are isomorphic to F2. They are the “antidiagonal” copies of F2 in each factor
F2 ×F2 in each vertex group.

The group WT is built in a similar way, with the free-by-cyclic group G = F2 oϕZ

used in place of F2; thus the vertex groups are G ×G ×G , and the edge groups are
isomorphic to G . The groups G possess 2–dimensional CAT(0) structures, by work of
Tom Brady [Bra95].

Given the CAT(0) structure on WT , the ambient group GT,n can also be made CAT(0),
as in the discussion of the Embedding Trick above; see Section 4. When building this
CAT(0) structure, we fix the free group automorphism ϕ to be a particular one which
is palindromic. Tom Brady’s CAT(0) structure has a symmetry that respects the palin-
dromic nature of ϕ. In the case of the other free-by-cyclic groups arising in [Bra95],
we believe that analogous symmetries exist (in the palindromic case), but establish-
ing this would take us too far afield. It is for this reason that the exponents in the main
theorem involve 1+p

2 (which is λ for this choice of ϕ). Apart from the CAT(0) state-
ment for GT,n , the rest of the paper does not require any particular choice ofϕ, and we
compute the Dehn functions of ST,n in terms of a general (monotone, palindromic)
ϕ.

Corridor schemes and σ–corridors. There are several places where we make use of
corridor arguments in van Kampen diagrams. There are many different types of cor-
ridors under consideration simultaneously, and these different types are codified as
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corridor schemes. In particular, the group VT possesses a large number of distinct cor-
ridor schemes, which are parametrized by maximal segmentsσ in a tree T̂ . Each such
segment determines a corridor scheme, whose corridors are called σ–corridors.

These corridors provide the primary means by which we establish the properties of
VT that are needed, such as the balancing property (Proposition 6.7). This latter prop-
erty is somewhat awkward to explain, but it concerns the distribution of generators
in words representing the trivial element. The property has the most force when the
generators all lie in peripheral subgroups of VT . It implies, for instance, that an ele-
ment of a peripheral subgroup cannot be expressed efficiently using only generators
from other peripheral subgroups; see Remarks 6.8. The balancing property plays a key
role in several parts of the paper, most notably in the distortion bound of Proposition
9.7, and also in the area bound for VT given in Proposition 10.3.

Least-area diagrams. In sections 7 and 8 we define families of van Kampen diagrams
in order to establish the lower bound for the Dehn function of ST,n . We use basic
building blocks called canonical diagrams, which are defined for every palindromic
word in 〈x, y〉. These are diagrams over the vertex group VT . We then build snowflake
diagrams over ST,n , using canonical diagrams joined along strips dual to the stable
letters of ST,n .

To establish the lower bound, we show that all of these diagrams minimize area
relative to their boundary words. Proving this requires a detailed study ofσ–corridors
and their intersection properties for various σ.

Edge group distortion. The heart of the computation of the Dehn function of ST,n

lies in Proposition 9.7, in which we establish the distortion of the edge groups inside
ST,n . This argument requires first some properties of folded corridors, analogous to
those studied in [BG10] in the context of free-by-cyclic groups. These properties are
established in the first half of Section 9, culminating in Lemma 9.5.

Next we establish the bound on edge group distortion. The proof is an inductive
proof based on Britton’s Lemma. It falls into two cases, which require very different
treatments. In the first case, the proof is based on a method from [BB00]. It is only
thanks to the balancing property of VT that this argument can be carried out.

The second case is where the folded corridors and Lemma 9.5 come in. The in-
ductive framework is based on the nested structure of r j –corridors in a putative van
Kampen diagram. These corridors may appear in two possible orientations, forwards
and backwards. Forward-facing corridors present few difficulties and can be handled
using the method above based on the balancing property. If there is a backwards-
facing r j –corridor, then it may introduce undesirable geometric effects that threaten
to spoil the inductive calculation. The argument in this case is to show that when this
occurs, there will be forward facing corridors just behind the first one, and perfectly



SNOWFLAKE GEOMETRY IN CAT(0) GROUPS 7

matching segments along these corridors, along which any metric distortion intro-
duced by the first corridor is exactly undone.

Computing the Dehn function. Establishing the upper bound for the Dehn function
of ST,n proceeds along similar lines as in [BBFS09]. One important step in this argu-
ment is a statement about area in the vertex group. This occurs in Proposition 10.3 in
the present paper. Due to the more complicated structure of VT (being constructed
from free groups), the argument is considerably more involved than the correspond-
ing result in [BBFS09]. It requires many of the tools developed here, such as the bal-
ancing property and corridor schemes.

Acknowledgments. Noel Brady acknowledges support from the NSF and from NSF
award DMS-0906962. Max Forester acknowledges support from NSF award DMS-
1105765.

2. PRELIMINARIES

In this section we review some basic definitions and properties concerning Dehn
functions, van Kampen diagrams, and words in the free group.

Dehn functions. Let G = 〈 A | R 〉 be a finitely presented group and w a word in the
generators A±1 representing the trivial element of G . We define the area of w to be

Area(w) = min
{

N ∈N ∣∣ ∃ equality w =
N∏

i=1
u j r j u−1

j freely, where r j ∈ R±1
}

.

The Dehn function δ(x) of the finite presentation 〈 A | R 〉 is given by

δ(x) = max
{

Area(w)
∣∣ w ∈ ker(F (A) →G), |w | É x

}
where |w | denotes the length of the word w .

There is an equivalence relation on functions f : N→ N defined as follows. First,
we say that f 4 g is there is a constant C > 0 such that

f (x) É C g (C x)+C x

for all x ∈ N. If f 4 g and g 4 f then we say that f and g are equivalent, denoted
f ' g . It is not difficult to show that two finite presentations of the same group define
equivalent Dehn functions; we therefore speak of “the” Dehn function of G , which is
well defined up to equivalence.

Remark 2.1. In order to show that f 4 g for non-decreasing functions f and g , it is
sufficient to prove that f (ni ) É g (ni ) for an unbounded sequence of positive integers
{ni } such that the ratios ni+1/ni are bounded. For, if ni+1 É C ni for all i and x is any
integer between ni and ni+1, say, we have f (x) É f (ni+1) É g (ni+1) É g (C ni ) É g (C x).
Therefore f (x) ÉC g (x) for all x.
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Let X be a 2–dimensional cell complex. We call X a presentation 2–complex if it has
one 0–cell, and every 2–cell is attached by a map f : S1 → X (1) which is regular in the
following sense: there is a cell structure for S1 such that the restriction of f to each
edge maps monotonically over a 1–cell of X .

The presentation 2–complex of the presentation 〈 A | R 〉 has oriented 1–cells la-
beled by the generators in A, and a 2–cell for each relator r in R, attached via a map
S1 → X (1) which traverses edges sequentially, following the word r .

Given a presentation 2–complex X , one then has the notion of a van Kampen dia-
gram over X . Briefly, a van Kampen diagram for the word w is a contractible, planar
2–complex with edges labeled by generators, with each 2–cell boundary word equal
to a relator, with outer boundary word w . The area of the diagram is the number of
its 2–cells. It is a standard fact that Area(w) as defined above can be interpreted as
the minimal area of a van Kampen diagram over X for w . See [Bri02] for details on
this interpretation of Area(w). We refer to [Bri02] for background on Dehn functions
generally, and also to [BH99] for background on CAT(0) spaces.

Words and automorphisms. A word w(x, y) is palindromic if w(x−1, y−1) = w(x, y)−1

as words in the free group. An automorphism ϕ : 〈x, y〉→ 〈x, y〉 is called palindromic
if it takes palindromic words to palindromic words. Note thatϕwill be palindromic if
the two words ϕ(x), ϕ(y) are palindromic. If ϕ is palindromic, so is ϕn for any n Ê 1.

A word w(x, y) is positive if it does not contain occurrences of x−1 or y−1. It is neg-
ative if it does not contain x or y . It is monotone if it is positive or negative. Note
that monotone words are reduced, and if w is monotone then so is w−1. If an au-
tomorphism ϕ takes x and y to monotone words of the same kind, then it takes all
monotone words to monotone words. We call ϕ monotone if it has this property. The
same will then be true of ϕn for any n Ê 1. (The inverse ϕ−1 will typically not be
monotone.)

3. GROUP-THEORETIC CONSTRUCTIONS

In this section we begin by constructing groups VT and WT , which will then serve as
vertex groups in graph of groups decompositions defining the snowflake group ST,n

and the CAT(0) group GT,n .
Our constructions make use of a free group automorphismϕ : 〈x, y〉→ 〈x, y〉 which

is both palindromic and monotone. For concreteness, we define ϕ to be the auto-
morphism given by ϕ(x) = x y x, ϕ(y) = x. In most of what follows, only the palin-
dromic and monotone properties of ϕ are relevant. However, in Section 4 we define
the CAT(0) structure for GT,n based on the knowledge thatϕ is the automorphism just
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defined. This section is the only place where explicit knowledge of ϕ is used. In par-
ticular, all results concerning the groups ST,n are valid for any palindromic, monotone
ϕ.

Let λ be the exponential growth rate of ϕ. That is, λ is the Perron-Frobenius eigen-

value of the transition matrix Mϕ =
( |ϕ(x)|x |ϕ(y)|x
|ϕ(x)|y |ϕ(y)|y

)
. From the beginning, we will

fix an integer n Ê 1 and work with the automorphism ϕn .

The groups F and G. In this paper F will always denote the free group of rank two,
〈x, y〉. We define G to be the free-by-cyclic group F oϕn 〈t〉. That is,

G = 〈x, y, t | t xt−1 =ϕn(x), t y t−1 =ϕn(y)〉.

One verifies easily that because ϕn is palindromic, there is an involution τG : G → G
defined by τG (x) = x, τG (y) = y , and τG (t ) = t (bar denotes inverse). Similarly, define
the involution τF : F → F by τF (x) = x, τF (y) = y . We may refer to either involution
simply as τ.

The groups we construct will contain many copies of F and G . The different copies
will be indexed along with their generators: Fi = 〈xi , yi 〉 and Gi = 〈xi , yi 〉oϕn 〈ti 〉.

The groups V and W . These groups are defined as follows:

V = F0 ×F1 ×F2,

W = G0 ×G1 ×G2.

Thus V has generators x0, y0, x1, y1, x2, y2 and W contains V along with the additional
generators t0, t1, t2.

Define the following subgroups (indices mod 3):

Ai = 〈xi xi+1, y i yi+1〉 < Fi ×Fi+1 < V ,

Bi = 〈xi xi+1, y i yi+1, ti ti+1〉 < Gi ×Gi+1 < W.

There are injective homomorphisms F → Fi ×Fi+1 and G →Gi ×Gi+1 given by τF × id
and τG × id respectively, taking x to xi xi+1, y to y i yi+1, and t to ti ti+1. The subgroups
Ai and Bi are the images of these homomorphisms, and therefore are isomorphic to
F and G , with the generators listed above corresponding to the standard generators
x, y, t . We name these generators as follows:

ai = xi xi+1, bi = y i yi+1, ci = ti ti+1.

Thus, Ai = 〈ai ,bi 〉 and Bi = 〈ai ,bi 〉oϕn 〈ci 〉. These subgroups will be called peripheral
subgroups.
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The groups VT and WT . These groups will be obtained by amalgamating copies of V
(respectively, W ) together along peripheral subgroups.

Let T be a finite tree of valence at most 3. Choose a copy of V for each vertex of T ,
and assign distinct peripheral subgroups of V to each of the outgoing edges at that
vertex. Then, for each edge in T , amalgamate the associated peripheral subgroups of
the two copies of V via the isomorphism τ (relative to their standard generating sets).1

The resulting group is VT . In the case where T is a single vertex, VT is just V .
The group WT is defined by the same procedure with vertex groups W instead of

V . Again, if T has one vertex, then WT =W .
In order to have consistent notation, assign non-overlapping triples of indices (0,1,2),

(3,4,5), etc. to the vertices of T , and use these in place of (0,1,2) in the definitions of
V and W above. For example, in the case of WT , if a vertex has triple (3,4,5), then the
vertex group is G3 ×G4 ×G5 with peripheral subgroups labeled B3, B4, and B5. The
subgroup B5 has standard generators a5 = x5x3, b5 = y5 y3, and c5 = t5t3.

With this notation, if an edge e of T is assigned the peripheral subgroups Bi and
B j in its neighboring vertex groups, then amalgamating along e adds the relations

ai = a j , bi = b j , and ci = c j .

0 1

2
3

45

6

7

8

9 10

11
12

13

14

15

16

17

A0 A9

A13

A15

A16A6A7

A2
T

FIGURE 1. The diagram D on the left, and the triangulated (|T | + 2)–
gon on the right, with dual graph T . Each triangle with corners la-
beled i , j ,k represents the vertex group Fi ×F j ×Fk or Gi ×G j ×Gk . The
side pairings depict the amalgamations A1 =τ A5, A3 =τ A11, A4 =τ A8,
A10 =τ A12, and A14 =τ A17 (in the case of VT ).

It may be helpful to consider the diagram D as shown in Figure 1. It has a triangle
for each vertex of T , with corners corresponding to the factors Fi or Gi of the vertex
group there. The edges correspond to peripheral subgroups, and the edge-pairings
between triangles correspond to amalgamations. The triangles assemble into a trian-
gulated (|T |+2)–gon with dual graph T . (Here, |T | denotes the number of vertices of
T .)

1There is no need to specify a direction because τ is an involution.
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The orientations on edges indicate the standard generating sets of the peripheral
subgroups, relative to the indexing of the groups Fi or Gi . The orientation-reversing
nature of the side pairings reflects the fact that the amalgamations are performed
using τ.

The peripheral subgroups of VT (or of WT ) are defined to be the remaining periph-
eral subgroups of the vertex groups that were not assigned to edges of T . In terms of
the diagram D , these are the peripheral subgroups corresponding to the edges form-
ing the boundary (|T |+2)–gon.

Next we re-index the peripheral subgroups. Note that the boundary edges along D
are coherently oriented. Start with one and let ν0 be the index of the corresponding
peripheral subgroup. Following the orientation, let ν1 be the index of the next edge
along ∂D . Repeat in this way and define the indices ν0 . . . ,νm , allowing us to refer to
the peripheral subgroups as Aν0 , . . . , Aνm (or Bν0 , . . . ,Bνm ). Note, m = |T |+1.

The groups ST,n and GT,n . Fix a tree T as above and let m = |T |+1. The group ST,n is
defined to be a multiple HNN extension over VT with stable letters r1, . . . ,rm , where ri

conjugates the peripheral subgroup Aν0 to Aνi via the automorphism ϕn . That is,

ST,n = 〈VT ,r1, . . . ,rm | ri aν0 r−1
i =ϕn(aνi ),

ri bν0 r−1
i =ϕn(bνi ) for each i 〉. (3.1)

Thus ST,n is the fundamental group of a graph of groups whose underlying graph is
the m–rose (having one vertex and m loops). The vertex group is VT and the edge
groups are all F .

We define GT,n in a similar manner, but without twisting. It is a multiple HNN
extension over WT with stable letters s1, . . . , sm , where si conjugates Bν0 to Bνi via the
identity map:

GT,n = 〈WT , s1, . . . , sm | si aν0 s−1
i = aνi ,

si bν0 s−1
i = bνi , si cν0 s−1

i = cνi for each i 〉. (3.2)

Again, GT,n is the fundamental group of a graph of groups over the m–rose. The vertex
group is WT and the edge groups are all G .

4. THE CAT(0) STRUCTURE

In this section we build the CAT(0) structure for the group GT,n .

The space Z . Recall that we have chosen a specific monotone palindromic automor-
phism ϕ : F → F given by ϕ(x) = x y x, ϕ(y) = x. Let

G0 = 〈x, y〉oϕ 〈t0〉 = 〈x, y, t0 | t0xt0
−1 = x y x, t0 y t0

−1 = x 〉. (4.1)
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T. Brady [Bra95] has constructed a piecewise Euclidean, locally CAT(0) 2–complex Z0

with fundamental group G0. This 2–complex has two vertices, four edges, and two
2–cells, consisting of a Euclidean octagon and quadrilateral as shown in Figure 2. The
angle α ∈ (0,π) is a free parameter, and the rest of the geometry (up to scaling) is then
determined. It is easy to check that both vertices satisfy the link condition, making Z0

locally CAT(0).

τZ0

τZ0

α

α

α

α

π π

z0 z0

z0 z0x

y

t0

FIGURE 2. The piecewise Euclidean 2–complex Z0 and its isometric in-
volution τZ0 .

The figure also shows three arcs crossing the interiors of the 2–cells, representing
the elements x, y , and t0 in π1(Z0, z0); we leave it to the reader to verify that π1(Z0, z0)
indeed has the presentation (4.1) relative to these generators.

Reflection of each 2–cell across the vertical dotted lines in Figure 2 respects the
edge identifications, and induces an isometric involution τZ0 : Z0 → Z0. The induced
homomorphism τG0 : G0 →G0 is given by τG0 (x) = x, τG0 (y) = y , and τG0 (t0) = t0.

Let t = (t0)n and note that the index-n subgroup 〈x, y, t〉/G0 is the group G defined
earlier. The corresponding covering space Z of Z0 has a locally CAT(0) structure made
from n octagons and n quadrilaterals. The involution τZ0 lifts to an isometric involu-
tion τZ : Z → Z , with induced homomorphism τG . The case n = 3 is shown in Figure
3.

To summarize, we now have a locally CAT(0) space Z with fundamental group G ,
and an isometric involution τZ : Z → Z whose induced homomorphism is given by
the involution τG .

The space KT . We shall need the following “gluing with a tube” result.

Proposition 4.2 ([BH99], II.11.13). Let X and A be locally CAT(0) metric spaces. If
A is compact and ϕ,ψ : A → X are locally isometric immersions, then the quotient
of X t (A × [0,1]) by the equivalence relation generated by (a,0) ∼ ϕ(a); (a,1) ∼ ψ(a),
∀a ∈ A is locally CAT(0).
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τZ

τZ

τZ

τZ

τZ

τZ

FIGURE 3. The locally CAT(0) 2–complex Z and its involution τZ , when
n = 3.

Let Zi and Z j be copies of Z with fundamental groups Gi and G j repsectively. Let
Zi × Z j be given the product metric. Define the map fi , j : Z → Zi × Z j by fi , j (p) =
(τz(p), p). Note that the induced homomorphism ( fi , j )∗ : G → Gi ×G j is given by
x 7→ xi x j , y 7→ y i y j , t 7→ ti t j . Metrically, fi , j behaves as follows:

d( fi , j (p), fi , j (q)) = d((τZ (p), p), (τZ (q), q))

= (d(τZ (p),τZ (q))2 +d(p, q)2)1/2

= (2d(p, q)2)1/2 = p
2d(p, q).

Hence fi , j is an isometric embedding of the scaled metric space (
p

2)Z into Zi ×Z j .
Now we define the locally CAT(0) space KT with fundamental group WT . Let

K = Z0 ×Z1 ×Z2

where each Zi is a copy of Z . Thus, K is locally CAT(0) and has fundamental group
W = G0 ×G1 ×G2. Fix a basepoint v ∈ Z and let vi ∈ Zi be the corresponding points.
Each product space Zi ×Zi+1 isometrically embeds into K using the basepoint vi−1 as
the missing coordinate (indices mod 3). Define the peripheral subspace Li to be the
image of the map

Z
fi ,i+1−→ Zi ×Zi+1 ,→ K . (4.3)

Note that Li has fundamental group Bi <W and the induced mapπ1(Z , v) →W is the
standard inclusion map x 7→ ai , y 7→ bi , t 7→ ci with image Bi .

The space KT is formed from copies of K in the same way that WT is built from
copies of W . Take a copy of K for each vertex of T , with all indices re-named to agree
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with the triple of indices assigned to that vertex. Whenever Bi and B j were amalga-
mated in WT , glue the ends of a tube (

p
2)Z ×[0,1] to the peripheral subspaces Li and

L j , using the isometric embedding (4.3) from (
p

2)Z × {0} to the copy of K containing
Li , and using a similar isometric embedding

Z
τZ−→ Z

f j , j+1−→ Z j ×Z j+1 ,→ K

from (
p

2)Z × {1} to the copy of K containing L j . The involution τZ is being used
to obtain the correct identification between the subgroups Bi and B j . The resulting
space KT has fundamental group WT , and is locally CAT(0) by Proposition 4.2. In
particular, WT is CAT(0).

Remark 4.4. The reasoning above also shows that VT is CAT(0). One simply re-defines
Z to be the space S1 ∨S1 with any path metric (which will be locally CAT(0)). There
is an obvious isometric involution τZ which reverses the direction of each loop in Z ,
and induces τF : F → F . The rest is entirely similar.

The space KT,n . Inside KT there are peripheral subspaces Lν0 , . . . ,Lνm . For each j =
1, . . . ,m glue the ends of a tube (

p
2)Z × [0,1] to Lν0 and Lν j using the isometric em-

beddings (4.3) from (
p

2)Z × {0} and (
p

2)Z × {1} to the appropriate copies of K in KT .
The resulting space KT,n is the total space of a graph of spaces corresponding to the
description (3.2) of GT,n as the fundamental group of a graph of groups. In particu-
lar, KT,n has fundamental group GT,n . It is locally CAT(0) by Proposition 4.2. Thus we
have proved:

Theorem 4.5. GT,n is CAT(0). �

5. EMBEDDING RESULTS

In this section we define the embedding ST,n → GT,n and prove that it is injective.
The map is defined step by step, following the constructions defining ST,n and GT,n .
In several places we use the following lemma to establish injectivity. It is a special case
of a basic result of Bass [Bas93], reformulated slightly.

Lemma 5.1 (Injectivity for graphs of groups). Suppose A and B are graphs of groups
such that the underlying graph ΓA of A is a subgraph of the underlying graph of B.
Let A and B be their respective fundamental groups. Suppose that there are injective
homomorphisms ψe : Ae → Be and ψv : Av → Bv between edge and vertex groups, for
all edges e and vertices v in ΓA , which are compatible with the edge-inclusion maps.

(That is, whenever e has initial vertex v, the diagram

Ae −−−−→ Av

ψe

y ψv

y
Be −−−−→ Bv
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commutes.)
Ifψe (Ae ) =ψv (Av )∩Be whenever e has initial vertex v, then the induced homomor-

phism ψ : A → B is injective.

Remark 5.2. Given the initial assumptions, it is always true that ψe (Ae ) ⊂ (ψv (Av )∩
Be ). In practice one only needs to verify that ψe (Ae ) contains ψv (Av )∩Be .

Proof. The homomorphismsψe , ψv combine to give a morphism of graphs of groups
in the sense of Bass [Bas93]. According to Proposition 2.7 of [Bas93],ψ : A → B will be
injective if, whenever e has initial vertex v , the function Av /Ae → Bv /Be induced by
ψv is injective.

To prove that the latter statement holds, suppose that the cosets ψv (a1)Be and
ψv (a2)Be are equal for some a1, a2 ∈ Av . Then ψv (a1a−1

2 ) ∈ Be , and hence (by the
main assumption) ψv (a1a−1

2 ) ∈ ψe (Ae ). Since ψe is injective (and agrees with ψv ),
a1a−1

2 ∈ Ae , and therefore a1 Ae = a2 Ae . �

Lemma 5.3. Let ι : V →W be inclusion. Then ι(Ai ) = ι(V )∩Bi for each i .

Proof. Without loss of generality let i = 0. Note that ι(A0) and ι(V )∩B0 are both con-
tained in the subgroup G0 ×G1, so it suffices to show that ι(A0) = ι(F0 × F1)∩B0 in
G0 ×G1. One direction, ι(A0) ⊂ ι(F0 ×F1)∩B0, is obvious.

For the other direction, consider an element of ι(F0 ×F1)∩B0. It can be expressed
as a word w(x0x1, y0 y1, t0t1), which equals w(x0, y0, t0)w(x1, y1, t1) in G0 ×G1. Being
in ι(F0 ×F1) it also has an expression of the form u(x0, y0)v(x1, y1) where u and v are
reduced words in the free group. Projecting onto the second factor of G0 ×G1, one
obtains the equation in G :

w(x, y, t ) = v(x, y).

Considering G as an HNN extension with vertex group F and stable letter t , the right
hand side is a word in normal form (that is, a word of length 1 consisting of an element
of F ), and therefore gives the (unique) normal form representative for the element w .
Similarly, considering {x0, y0} as a basis for F0, projecting onto the first factor gives the
equation in G

w(x, y, t ) = u(x, y)

and hence u(x, y) is also the normal form for w . We conclude that u and v represent
the same element of F . Since both words are reduced, they are equal as words and so
u(x0, y0)v(x1, y1) = u(x0, y0)u(x1, y1) = u(x0x1, y0 y1) ∈ ι(A0). �

Proposition 5.4. The inclusion maps Fi ,→ Gi induce an injective homomorphism
VT →WT .

Henceforth we will regard VT as a subgroup of WT .
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Proof. We will use Lemma 5.1 since VT and WT are both fundamental groups of graphs
of groups with underlying graph T .

To elaborate on the graph of groups structures of VT and WT , fix an orientation of
each edge of T and use these to specify the edge-inclusion maps as follows. For VT ,
each edge group is F and the two neighboring vertex groups are isomorphic to V . For
the initial vertex, the inclusion map F → Fi×Fi+1 is τF×id, and for the terminal vertex,
the inclusion map F → F j ×F j+1 is id×τF . In the case of WT , the same convention
is used: inclusion maps G → Gi ×Gi+1 are τG × id for initial vertices and id×τG for
terminal vertices.

The inclusion maps Fi →Gi induce inclusions between corresponding vertex groups
V →W . The compatibility diagrams become

F
τF×id−−−−→ Fi ×Fi+1 −−−−→ Vy y

G
τG×id−−−−→ Gi ×Gi+1 −−−−→ W

or

F
id×τF−−−−→ Fi ×Fi+1 −−−−→ Vy y

G
id×τG−−−−→ Gi ×Gi+1 −−−−→ W

and these clearly commute (all unnamed maps are inclusion). Thus there is an in-
duced homomorphism VT → WT . The last condition needed by Lemma 5.1 is pro-
vided by Lemma 5.3, and so we conclude from 5.1 that VT →WT is injective. �

Change of coordinates in GT,n . We plan to use Lemma 5.1 to embed ST,n into GT,n ,
but first we must modify the graph of groups structure of GT,n . The modification
amounts to a change in the choice of stable letters in the multiple HNN extension
description of GT,n . Alternatively, it can be seen as an application of Tietze transfor-
mations.

Indeed, one can start with the presentation (3.2) defining GT,n , add new generators
u1, . . . ,um and relations ui = cνi si , replace occurrences of si with c−1

νi
ui , and delete the

generators si . The relation si aν0 s−1
i = aνi becomes c−1

νi
ui aν0 u−1

i cνi = aνi , or equiva-
lently, ui aν0 u−1

i = cνi aνi c−1
νi

= ϕn(aνi ). Similarly, the relation si bν0 s−1
i = bνi becomes

ui bν0 u−1
i =ϕn(bνi ) and the relation si cν0 s−1

i = cνi becomes ui cν0 u−1
i = cνi . Thus one

obtains the new presentation

GT,n = 〈WT ,u1, . . . ,um | ui aν0 u−1
i =ϕn(aνi ),

ui bν0 u−1
i =ϕn(bνi ), ui cν0 u−1

i = cνi for each i 〉. (5.5)

This is evidently the presentation arising from a new description of GT,n as a multiple
HNN extension of WT with stable letters u1, . . . ,um , where ui conjugates Bν0 to Bνi via
ϕn × id.

Theorem 5.6. The homomorphism ST,n → GT,n induced by the inclusion VT ,→ WT

and the assigment ri 7→ ui is injective.
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Proof. First, given the presentations (3.1) and (5.5), it is clear that the given assign-
ment defines a homomorphism ST,n →GT,n . Furthermore, this is the homomorphism
induced by the injective maps on vertex and edge groups: VT ,→WT in the case of the
vertex, and F ,→G for each edge of the m–rose. The corresponding compatibility dia-
grams are

F
id−−−−→ Aν0 −−−−→ VTy y

G
id−−−−→ Bν0 −−−−→ WT

and

F
ϕn

−−−−→ Aνi −−−−→ VTy y
G

ϕn×id−−−−→ Bνi −−−−→ WT

where A j and B j are canonically identified with F and G via their standard generating
sets, and the unnamed maps are inclusion. These diagrams commute.

We have all of the initial hypotheses of Lemma 5.1 satisfied. It remains to verify
that Aνi = VT ∩Bνi in WT for i = 0, . . . ,m. Consider the vertex of T whose triple of
indices includes νi . Let V and W be the vertex groups at that vertex (for the graph of
groups decompositions of VT and WT ). Then Aνi and VT ∩Bνi are both contained in
W . Moreover W ∩VT =V , and so it suffices to show that Aνi =V ∩Bνi . This holds by
Lemma 5.3. Hence, by Lemma 5.1, the map ST,n →GT,n is injective. �

6. CORRIDOR SCHEMES AND THE BALANCING PROPERTY OF VT

In this section we develop two key tools which will play an essential role through-
out the rest of the paper. These tools are specific to the groups VT , and they are the
primary means by which we establish the various properties of VT that are needed.
The first of these is the notion of σ–corridors in van Kampen diagrams over VT . The
second is the balancing property of VT , given in Proposition 6.7.

In order to discuss σ–corridors we first define corridor schemes. We will make use
of several corridor schemes in this paper, in addition to σ–corridors. In this section
we also discuss the standard generating set for VT , and various notions of length as-
sociated with this generating set.

The 2–complex XT . In order to discuss area in VT we will work with a specific 2–
complex XT with fundamental group VT .

The group V has a presentation with generators xi , yi , ai ,bi for i = 0,1,2 and eigh-
teen relations (see also Figure 5):

ai = xi xi+1, ai = xi+1xi , bi = y i yi+1, bi = yi+1 y i ,

xi yi+1 = yi+1xi , xi+1 yi = yi xi+1 (i = 0,1,2 mod 3) (6.1)

We define X to be the presentation 2–complex for this presentation of V . Thus X has
one 0–cell, twelve labeled, oriented 1–cells, twelve triangular 2–cells, and six quadri-
lateral 2–cells.
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For each i , the subcomplex Yi ⊂ X consisting of the two 1–cells labeled ai and bi

is called a peripheral subspace. It is homeomorphic to S1 ∨S1 and has fundamental
group Ai ⊂V .

The 2–complex XT is formed from copies of X in the same way that VT is built from
copies of V . Take a copy of X for each vertex of T , with edge labels re-indexed accord-
ing to the triple of indices assigned to that vertex. Whenever Ai and A j were amalga-
mated in VT , glue the peripheral subspaces Yi and Y j via a cellular homeomorphism
which induces τ between Ai and A j . The resulting space XT , with fundamental group
VT , has a natural cell structure. The 1–cells are labeled by the generators xi , yi , ai , and
bi , where in some cases, a 1–cell labeled ai or bi is also labeled a j or b j in the oppo-
site direction. The 2–cells are the same as those of the copies of X , with the same
triangular and quadrilateral boundary relations.

Area. In order to simplify the area calculations to follow, we declare each triangular
cell of XT to have area 1, and each quadrilateral cell to have area 2. (Think of it as
being made of two triangles.)

Corridor schemes. Let Z be any presentation 2–complex. A corridor scheme for Z is
a subset S of the set of edges of Z such that every 2–cell of Z has either zero or two
occurrences of edges of S in its boundary. Given such an S , one can then define
corridors in any van Kampen diagram over Z . Call the 2–cells having two S –edges in
their boundaries corridor cells. Given a van Kampen diagram ∆, two corridor cells in
∆ are called neighbors if they meet along an S –edge in their boundaries. A corridor
cell has zero, one, or two neighbors. A corridor is a minimal collection C of corridor
cells in ∆ such that if c ∈C then all neighbors of c are also in C . Every corridor cell is
contained in a corridor.

Corridors come in two types: those in which every corridor cell has neighbors along
both of its S –edges, called annulus type, and the others, called band type. Each
band type corridor joins an S –edge on the boundary of ∆ to another S –edge on
the boundary of ∆, and contains no other S –edges on the boundary of ∆. An annu-
lus type corridor may have 2–cells meeting the boundary of ∆, but the S –edges of
such 2–cells will not be on the boundary.

If C is a corridor in ∆, then the subset formed by taking the union of the interiors of
its 2–cells along with the interiors of its S –edges is an open set, homeomorphic to a
tubular neighborhood of a properly embedded connected 1–dimensional submani-
fold of ∆. The 1–manifold meets each corridor cell in an arc joining the two S –edges
of the cell. Thus an annulus type corridor contains an embedded open annulus, and a
band type corridor contains an embedded open band [0,1]×(0,1) meeting the bound-
ary of the diagram in its boundary {0,1}× (0,1).
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Corridors have two key properties. First, two corridors in a diagram ∆ will never
have 2–cells or S –edges in common. In particular, corridors cannot cross. Second,
every S –edge appearing on the boundary of ∆ is part of a band type corridor, unless
that edge is not in any 2–cell of ∆. In particular, given an S –edge in the boundary
of ∆, if there is a 2–cell containing that edge, then one can pass from neighbor to
neighbor in the corridor, until one arrives at a second, uniquely determined, S –edge
on the boundary of ∆. Also, in the boundary, this pair of S –edges cannot be linked
with another such pair, because corridors do not cross.

Orientable corridor schemes. A corridor scheme S is orientable if there is a choice
of orientations of the edges of S such that in each corridor cell, the two S –edges
have oppposite orientations relative to the boundary of the cell. It follows that in any
corridor, the transverse orientations of the S –edges along the corridor all agree.

Remark 6.2. A corridor scheme defines a 1–dimensional Z2–valued cellular cocycle
in Z . (If Z happens to be a simplicial complex, then every 1–cocycle is a corridor
scheme.) An orientable corridor scheme defines a Z–valued 1–cocycle in Z . See Ger-
sten [Ger98] for a thorough study of corridors from the cohomological point of view.

σ–corridors. Recall that D was a diagram made of triangles, with dual graph T , which
may be regarded as being embedded as a subspace of a triangulated (|T |+2)–gon. Let
T̂ be a tree obtained from T by joining the midpoint of each boundary edge to the
vertex in the neighboring triangle. Then T̂ has m + 1 leaves, corresponding to the
peripheral subgroups of VT , and interior vertices all of valence three, which are the
original vertices of T . Denote the leaves of T̂ by vν0 , . . . , vνm , so that vνi corresponds
to the peripheral subgroup Aνi .

Let σ be a maximal segment in T̂ . Note that σ is uniquely determined by its end-
points; choosing σ amounts to choosing a pair of peripheral subgroups of VT . For
each such σ we will define a corridor scheme Sσ for XT .

In the (|T | + 2)–gon, σ starts on a boundary edge, passes through a sequence of
triangles, and ends on a boundary edge. Its intersection with each of these triangles
is an arc joining two sides. It separates one corner of the triangle from the other two.
If i is the index of this corner, put the edges of XT labeled by xi and yi into Sσ. Also, if
σ passes through the side of a triangle associated with the subgroup A j , put the edges
labeled by a j and b j into Sσ. Do this for each triangle that intersects σ to obtain Sσ.
The fact that some edges of XT have two labels is not a problem; either both labels or
neither label will be chosen for inclusion in Sσ. See Figure 4.

One verifies easily that Sσ is a corridor scheme, by examining the relations (6.1)
for each triangle of D . See also Figure 5. (Because of the two-label phenomenon, it
is important here that σ is maximal.) Corridors defined by this scheme will be called
σ–corridors.
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FIGURE 4. This portion of σ passing through D contributes the follow-
ing edges of XT to Sσ: a0, b0, x1, y1, a1 (= a5), b1 (= b5), x5, y5, a4,
b4.

x0 x0 x1 x1 x2 x2

y1 y1 y2 y2 y0 y0 y2 y2 y0 y0 y1 y1

x0 x0 x1 x1 x2 x2
x0 x1 x2

a0 a1 a2x1 x1 x2 x2 x0 x0

x0 x1 x2
y0 y1 y2

y1 y1 y2 y2 y0 y0b0 b1 b2

y0 y1 y2

FIGURE 5. Part of the corridor scheme Sσ, in green, for the segment
σ from Figure 4. The 2–cells from the copy of X with triple (0,1,2) are
shown. There is an analogous collection of corridor cells for every tri-
angle that σ meets.

Remark 6.3. Looking closely at the corridor scheme Sσ, two additional properties
become evident. First, the Sσ–edges appearing in a single corridor are all labeled xi

or ai for various indices i , or they are all labeled yi or bi . (That is, Sσ is the disjoint
union of two smaller corridor schemes.)

Second, the corridor scheme Sσ is orientable. Referring to Figure 5, we can give
positive orientations (relative to the labeling) to the edges labeled x0, y0, x1, y1, a0,
and b0, and negative orientations to those labeled a1 and b1. This set of choices,
or its opposite, can be imposed on any copy of X in XT that contains edges of Sσ.
If two copies are adjacent, meaning that they intersect in a subspace Yi , then the
orientations on each copy can be made to agree on Yi , by reversing the choices on
one side if necessary. Now recall that the copies of X containing edges of Sσ all lie
along σ. Starting with the copy of X at one end, one may propagate these choices
consistently over all of Sσ.
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Orientability implies that if an Sσ–edge label appears more than once along a cor-
ridor, then it is oriented the same way across the corridor in each occurrence. Fur-
thermore, if a band type corridor joins two Sσ–edges in the boundary which carry
the same label, then those labels have opposite orientations relative to the boundary
of the diagram.

Standard generators for VT . Recall that VT contains many free subgroups Ai = 〈ai ,bi 〉
which were the peripheral subgroups of the vertex groups V . Some of these sub-
groups were assigned to edges of T and amalgamated together; these subgroups of
VT will be called the internal subgroups, and their generators the internal generators.
Recall that every Ai that is not an internal subgroup is called a peripheral subgroup
of VT .

The standard generating set for VT will be the union of the generators of the ver-
tex groups (all the generators xi and yi ) and the generators ai ,bi of the peripheral
subgroups. The internal generators are not included.

Definition 6.4. If w is a word let |w | denote the length of w . We define some addi-
tional lengths for a word w in the standard generators of VT :

• |w |x is the number of occurrences of letters x±1
i (for any i ) in w

• |w |y is the number of occurrences of letters y±1
i (for any i ) in w

• for each i , |w |i is the number of occurrences of letters a±1
i ,b±1

i in w

Clearly, |w | = |w |x +|w |y +∑
i |w |i .

We use similar notation to count occurrences of x±1 and y±1 in words representing
elements of 〈x, y〉.
Definition 6.5. We also define weighted word lengths ‖w‖ similar to the lengths above,
where letters are counted with real-valued weights.

Recall that ϕ has transition matrix Mϕ =
( |ϕ(x)|x |ϕ(y)|x
|ϕ(x)|y |ϕ(y)|y

)
with Perron-Frobenius

eigenvalue λ > 1. Let ~d be a left eigenvector for λ (so that ~d Mϕ = λ~d) with positive
entries d1 and d2.

To define the weighted word lengths, we assign the weight d1 to the letters xi and
ai , and we assign d2 to each yi and bi . Thus,

• ‖w‖x = d1|w |x
• ‖w‖y = d2|w |y

The weighted length functions are needed for the sake of Lemma 6.6 below. Up to
scaling, this is the only choice of weights for which the conclusion of the lemma holds.

Lemma 6.6. Suppose w is a word in the free group 〈x, y〉 and v is the reduced word
representingϕ(w). Let ‖·‖ denote the weighted word length which assigns weight d1 to
x±1 and weight d2 to y±1, where ~d Mϕ =λ~d. Then ‖v‖ Éλ‖w‖.
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Proof. This is a simple calculation:

‖ϕ(w)‖ = d1|ϕ(w)|x +d2|ϕ(w)|y
= d1|ϕ(x)|x |w |x +d1|ϕ(y)|x |w |y +d2|ϕ(x)|y |w |x +d2|ϕ(y)|y |w |y
= λd1|w |x +λd2|w |y
= λ‖w‖.

Now, ‖v‖ É ‖ϕ(w)‖ =λ‖w‖. �

The balancing property. A fundamental property of VT and its standard generating
set, the balancing property, is given in the next proposition.

Proposition 6.7. Suppose w and z(aν0 ,bν0 ) represent the same element of Aν0 ⊂ VT ,
where w is a word in the standard generators of VT and z(aν0 ,bν0 ) is reduced. Then for
each i = 1, . . . ,m there is an inequality

|z| É |w |νi +|w |ν0 +|w |x +|w |y .

Remarks 6.8. (1) The proposition says that an element of a peripheral subgroup can-
not be expressed efficiently using generators from other peripheral subgroups. For
instance, if w contains only generators from Aν1 , . . . , Aνm , then |w |ν0 = |w |x = |w |y = 0
and |w |νi Ê |z| for every i , whence |w | Ê m|z|. An example of such a word w is given
in (7.1) below, where z is the initial subword w(aν0 ,bν0 ) and w is the inverse of the
remaining expression (see also Figure 7).

(2) There is nothing special about ν0. By re-indexing the peripheral subgroups,
there is a corresponding statement that holds for each peripheral subgroup of VT .

Proof of Proposition 6.7. Let σ be the maximal segment in T̂ with endpoints vν0 and
vνi . The corridor scheme Sσ contains exactly four edges whose labels are peripheral
generators of VT ; these generators are aν0 , bν0 , aνi , and bνi . Every other standard
generator occurring as the label of an edge in Sσ is of the form x j or y j .

We may assume without loss of generality that w is reduced. We may further as-
sume that the word zw−1 is cyclically reduced, since cancellation of letters between z
and w−1 does not change the status of the inequality.

Let ∆ be a reduced van Kampen diagram over XT with boundary labeled by zw−1.
We may assume that ∆ is topologically a disk. Every edge on z is an Sσ–edge, and is
joined by a σ–corridor to another Sσ–edge on the boundary of ∆. If this latter edge is
not in z then it contributes 1 to the right hand side of the inequality, since it is labeled
by a standard generator.

We claim that noσ–corridor can join two edges of z. Then, sinceσ–corridors never
have Sσ–edges in common, there will be at least |z| Sσ–edges along w−1, which es-
tablishes the result.
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If a σ–corridor joins two edges of z, then since corridors do not cross, there is an
innermost such corridor. The Sσ–edges that it joins must be adjacent edges of z, by
the innermost property. Suppose (without loss of generality) the label on one of the
edges is aν0 . By Remark 6.3 the label on the other edge must then be a−1

ν0
, but this

contradicts the assumption that z is reduced. �

Remark 6.9. Proposition 6.7 remains true if weighted word lengths are used through-
out:

‖z‖ É ‖w‖νi +‖w‖ν0 +‖w‖x +‖w‖y

for each i = 1, . . . ,m. Recall that the proof entailed finding corridors joining letters
of z to letters of w . The letters occurring at the ends of such a corridor will have the
same weights, by Remark 6.3. Therefore, each contribution to the left hand side of the
inequality has a matching contribution on the right hand side.

7. CANONICAL DIAGRAMS

In this section we construct a large family of van Kampen diagrams over XT called
canonical diagrams. These will be used in the construction of snowflake diagrams
in the next section. We also develop properties of σ–corridors in order to show that
canonical diagrams and snowflake diagrams minimize area relative to their bound-
aries.

Canonical diagrams over XT . Let w(x, y) be a palindromic word in the free group.
In VT , for each i , one has the relation w(ai ,bi ) = w(xi , y i )w(xi+1, yi+1) where “i +
1” is interpreted appropriately. Since w is palindromic, this relation is identical to
the relation w(ai ,bi ) = w(xi , yi )−1w(xi+1, yi+1). It bounds a triangular van Kampen
diagram over XT of area |w |2; see Figure 6. Assembling three such diagrams in cyclic

w(x0, y0)

w(x1, y1)
w(a0,b0)

w(a0,b0)

w(a1,b1)w(a2,b2)

FIGURE 6. Assembling diagrams over XT

fashion, one obtains, for each vertex group V with index triple (i , j ,k), a diagram of
area 3|w |2 with boundary word w(ai ,bi )w(a j ,b j )w(ak ,bk ). Finally, taking diagrams
of the latter kind, one for each vertex of T , and assembling them according to T (just
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like the triangles in D) one obtains a van Kampen diagram over XT of area 3|T ||w |2
with boundary word

w(aν0 ,bν0 )w(aν1 ,bν1 ) · · ·w(aνm ,bνm ). (7.1)

See Figure 7. In assembling this diagram, we are using the fact that w(ai ,bi ) = w(a j ,b j )−1

w(a0,b0) w(a9,b9)

w(a13,b13)

w(a15,b15)
w16w6

w(a7,b7)

w(a2,b2)

FIGURE 7. The canonical diagram of w with boundary word (7.1),
where wi = w(ai ,bi ).

whenever Ai and A j were amalgamated, which also relies on the palindromic prop-
erty of w .

This van Kampen diagram will be called the canonical diagram of w , and it is de-
fined for every palindromic word. If w is reduced then the canonical diagram is also
reduced.

Our remaining objective in this section is to show that canonical diagrams (and
their “doubled” variants) minimize area. To this end, we need to establish some addi-
tional properties of σ–corridors.

Lemma 7.2. Let ∆ be a van Kampen diagram over XT and suppose that C is a σ–
corridor and C ′ is a σ′–corridor in ∆. If C and C ′ have intersection of positive area,
then C ∩C ′ contains one of the following:

(1) a quadrilateral relator
(2) two neighboring triangular relators with a common Sσ∩Sσ′–edge labeled ai

or bi

(3) a triangular relator with a side labeled by ai or bi , which is a Sσ∩Sσ′–edge in
the boundary of ∆.

We will refer to the quadrilateral relator in (1) and the union of the two neighboring
triangular relators in (2) as crossing squares for C ∩C ′. The triangular relators in (3)
will be called crossing triangles. Note that crossing squares have area 2.

We shall see that canonical diagrams are completely filled by crossing squares and
triangles for various pairs of corridors, and that these crossing regions must be present
in any diagram with the same boundary.
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Proof. If case (1) does not occur, then C ∩C ′ contains a triangular relator. Note that
Sσ has the property that a corridor cell is triangular if and only if one of its boundary
Sσ–edges is labeled ai or bi ; see Figure 5. The same is true of Sσ′ . Thus, the side
of the triangular relator labeled ai or bi is an Sσ ∩Sσ′–edge. If this edge is in the
boundary of ∆ then case (3) occurs. Otherwise, the neighboring 2–cell across that
edge is a corridor cell for both Sσ and Sσ′ and case (2) occurs. �

Lemma 7.3. If σ and σ′ are maximal segments in T̂ with no edges in common, then
Sσ∩Sσ′ is empty and no 2–cell is a corridor cell for both Sσ and Sσ′ .

Proof. Because T̂ has valence at most 3, σ and σ′ must actually be disjoint. Thus,
they never pass through the same triangle of D , which shows that Sσ∩Sσ′ is empty.
It follows immediately that no triangular 2–cell can be a corridor cell for both Sσ and
Sσ′ . The same is true for quadrilateral 2–cells because each such 2–cell has all of its
side labels coming from a single triangle in D . �

Definition 7.4. For each edge e in T̂ choose maximal segments σe , σ′
e in T̂ whose

intersection is exactly e. If e is an interior edge, we also require that the endpoints of
σe and σ′

e are linked in the boundary of the (|T |+2)–gon; see Figure 8.
If C and C ′ are σe – and σ′

e –corridors respectively, a crossing square or crossing tri-
angle for C ∩C ′ will be called an e–crossing square or an e–crossing triangle (or e–
crossing region in either case). Figure 8 shows the location of e–crossing regions in a
canonical diagram ∆.

e

σe

σe

σ′
e

σ′
e

FIGURE 8. An edge e in T̂ and the segments σe , σ′
e . The e–crossing

squares in ∆ fill a quadrilateral region of area 2|w |2 as shown. If e were
a peripheral edge, the e–crossing squares and triangles would fill a tri-
angular region next to the boundary of ∆, of area |w |2.

Lemma 7.5. If e and f are distinct edges of T̂ then e–crossing regions and f –crossing
regions have no 2–cells in common.
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Proof. It suffices to show that no 2–cell is a corridor cell simultaneously for all four
corridor schemes Sσe , Sσ′

e
, Sσ f , Sσ′

f
.

If e and f are separated by a third edge g , then at least one of σe , σ′
e and one of

σ f , σ′
f does not contain g . Hence, these two segments are disjoint and Lemma 7.3

applies.
Otherwise, e and f have a common vertex v . Consider the triangle in D centered

at v . There are three ways that a segment σ can pass through the triangle, and the
four segments must use all three of these. Of the eighteen 2–cells associated with this
triangle, one can verify easily that each 2–cell is a corridor cell for exactly two of the
three possible schemes. It follows that no 2–cell associated with this triangle can be
a corridor cell for all four corridor schemes. No other triangle in D can meet all four
segments, so the same is true for the other 2–cells of XT . �

Definition 7.6. A van Kampen diagram over X is called least-area if it has the smallest
area of all van Kampen diagrams over X having the same boundary word.

Proposition 7.7. Let w(x, y) be a reduced palindromic word. The canonical diagram
of w is least-area.

Proof. Let ∆ be the canonical diagram of w and let ∆′ be an arbitrary van Kampen
diagram with the same boundary word. Let `= |w |.

First we claim that for any choice of σ, say with endpoints vi and v j , there are
exactly ` band type σ–corridors in ∆′, each joining a letter in w(ai ,bi ) with a letter in
w(a j ,b j ). Certainly, these two subwords of (7.1) contain the only occurrences of Sσ–
edges in the boundary of ∆′, so the number of such corridors can only be `. Also, no
such corridor can join two letters of the same subword w(ai ,bi ) or w(a j ,b j ); using
Remark 6.3 as in the proof of Proposition 6.7 one finds that w must then fail to be
reduced.

Now let us identify crossing squares and triangles in ∆′. If e is an internal edge of
T̂ then every σe –corridor crosses every σ′

e –corridor, by the linking requirement on σe

and σ′
e (cf. Figure 8). Thus there are exactly `2 e-crossing squares for such e.

If e is a peripheral edge of T̂ incident to vi , say, then some pairs of σe – and σ′
e –

corridors cross and some do not. There is one corridor of each type (σe or σ′
e ) em-

anating from each letter in the subword w(ai ,bi ) on the boundary of ∆′, and this
accounts for all σe – and σ′

e –corridors. For each letter in w(ai ,bi ) the two corridors
emanating there will contain an e–crossing triangle; there are ` such corridor pairs.
Of the remaining corridor pairs, half of them definitely cross (because their endpoints
on the boundary are linked), yielding e–crossing squares. There are at least `(`−1)/2
of these. In total we have identified e-crossing regions of total area 2`2 when e is an
internal edge, and of total area `2 when e is a peripheral edge. By Lemma 7.5 we
conclude that Area(∆′) Ê Area(∆). �
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Doubled canonical diagrams. For any palindromic word w , take the canonical dia-
grams of w and of w−1 and join them along their boundary subwords labeled w(aν0 ,bν0 )
and w(aν0 ,bν0 )−1 to form a new diagram, called the doubled canonical diagram of w .
Its boundary word is given by

w(aν1 ,bν1 ) · · ·w(aνm ,bνm )w(aν1 ,bν1 )−1 · · ·w(aνm ,bνm )−1. (7.8)

If w is reduced, then so is its doubled canonical diagram.

Proposition 7.9. Let w(x, y) be a reduced palindromic word. The doubled canonical
diagram of w is least-area.

Proof. Let D∆ be the doubled canonical diagram of w and let ∆′ be an arbitrary van
Kampen diagram with the same boundary word.

Let σ be a maximal segment in T̂ that does not contain vν0 . The Sσ–edges on the
boundary of ∆′ comprise four subwords w(ai ,bi ), w(a j ,b j ), w(ai ,bi )−1, w(a j ,b j )−1,
arranged in this cyclic ordering. We claim that the σ–corridors joining letters in these
subwords must in fact join all the letters of w(ai ,bi ) to those of w(a j ,b j ), and similarly
with w(ai ,bi )−1 and w(a j ,b j )−1.

First, as before, no σ–corridor joins two letters of the same subword, because w is
reduced. Next, no corridor runs between w(ai ,bi ) and w(ai ,bi )−1 (or w(a j ,b j ) and
w(a j ,b j )−1) because then there is no room for the remaining corridors to be disjoint.
Thus, theσ–corridors must be arranged as in Figure 9. It is evident that if any corridor

wi

w j

w j

wi

FIGURE 9. A configuration of σ–corridors.

joins w(ai ,bi ) to w(a j ,b j )−1, then there is such a corridor joining the first letter of
w(ai ,bi ) to the last letter of w(a j ,b j )−1. If the first letter is, say, ai (in the orientation
of the boundary of ∆′), then the corridor joins it to a−1

j . On the other hand, in the
canonical diagram of w , there is a corridor joining ai in the boundary to the last letter
of w(a j ,b j ), which is a j (because w is palindromic). The existence of both corridors,
even in different diagrams, contradicts the orientability of Sσ established in Remark
6.3. Therefore all corridors join w(ai ,bi ) to w(a j ,b j ) or w(ai ,bi )−1 to w(a j ,b j )−1, as
claimed.



28 NOEL BRADY AND MAX FORESTER

If σ is a maximal segment with endpoints vν0 and vi then the only Sσ–edges on
the boundary are the two subwords w(ai ,bi ) and w(ai ,bi )−1, and all σ–corridors run
between them.

The rest of the proof now proceeds without difficulty just like Proposition 7.7. We
have complete knowledge of which pairs of edges in the boundary of ∆′ are joined by
corridors of various kinds, and these pairings are in agreement with those of D∆. One
easily finds the requisite numbers of e–crossing regions for each e and concludes that
Area(∆′) Ê Area(D∆). �

8. SNOWFLAKE DIAGRAMS

Snowflake diagrams, defined below, will be used to establish the lower bound in the
proof of Theorem 10.14.

The 2–complex YT,n . Recall that ST,n was defined via the relative presentation (3.1).
Starting with XT , adjoin 1–cells and 2–cells according to this relative presentation to
obtain the 2–complex YT,n with fundamental group ST,n . There will be m new 1–cells
labeled r1, . . . ,rm and 2m new 2–cells with boundary words given by the relators of
(3.1).

ri –corridors. For each i = 1, . . . ,m there is an orientable corridor scheme consisting
of the single edge labeled ri . It has two corridor cells which we think of as being
rectangular, with sides labeled by the words

ϕn(aνi )−1, ri , aν0 , r−1
i (8.1)

and
ϕn(bνi )−1, ri , bν0 , r−1

i . (8.2)

The sides labeled by aν0 or bν0 will be called the short sides and the sides labeled
by ϕn(aνi )−1 or ϕn(bνi )−1 the long sides of the corridor cells. The corridors for this
scheme are called ri –corridors.

Note that in any ri –corridor in a reduced van Kampen diagram, the short sides of
the corridor cells join up to form a single arc in the boundary of the corridor, labeled
by a reduced word w in the generators aν0 , bν0 . If this word happens to be mono-
tone, then the long sides of the corridor cells also assemble to form a monotone (and
reduced) word ϕn(w)(aνi ,bνi ).

Snowflake diagrams. Let w(x, y) be a monotone palindromic word. We will define
van Kampen diagrams over YT,n based on w and an integer d (the depth) denoted
∆(w,d). To begin, we define ∆(w,0) to be the doubled canonical diagram of w .

Next, to define ∆(w,d) for d > 0, start with the diagram ∆(ϕn(w),d −1) (noting that
ϕn(w) is also monotone and palindromic, by our assumptions on ϕ). Its boundary
word will have subwords of the formϕn(w)(aνi ,bνi )±1 for each i = 1, . . . ,m. Alongside
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each subword ϕn(w)(aνi ,bνi )ε adjoin a rectangular strip made of |w | 2–cells whose
four sides are labeled by the words

ϕn(w)(aνi ,bνi )−ε, ri , w(aν0 ,bν0 )ε, r−1
i .

Then, adjoin a copy of the canonical diagram of w−ε, which contains a side labeled
w(aν0 ,bν0 )−ε.

Doing this for each subword as described, one obtains ∆(w,d). See Figure 10. Note
that the boundary of ∆(w,d) contains many copies of the subwords w(aνi ,bνi )±1 for
each i = 1, . . . ,m. In fact, it is easy to verify by induction on d that the boundary word
is made entirely of copies of these words, together with occurrences of the letters r±1

i .

...

...

..
....

...

. . .
. . .

w0

w1 w2

w3

w4

w0

w1

w2

w3

w4

w0

w1

w2

w3

w4

ϕn w2
ϕn w0

ϕ2n w3
ϕ2n w0

ϕ3n w1

ϕ3n w0

ϕ4n w3

FIGURE 10. Part of the snowflake diagram∆(w,d), with m = 4 (and d Ê
4). The word ϕi n(w)(aν j ,bν j ) is abbreviated as ϕi n w j . The pentagonal
regions are canonical diagrams and the strips between them are r j –
corridors for various j .

Note that ∆(w,d) contains a sub-diagram ∆(ϕi n(w),d −i ) for each i between 0 and
d . In particular, it contains a copy of ∆(ϕdn(w),0), which is a doubled canonical dia-
gram of area 6|T ||ϕdn(w)|2.

Proposition 8.3. Let w(x, y) be a monotone palindromic word. For each d Ê 0 the
diagram ∆(w,d) is least-area.

Proof. First note that ∆(w,d) is reduced, since it is made of reduced sub-diagrams,
separated by reduced ri –corridors, which have no 2–cells in common with the sub-
diagrams. (The sub-diagrams being reduced depends on the monotonicity of w ,
which implies that the words ϕi n(w) are reduced.)
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Now suppose that d = 0 and let ∆′ be any reduced diagram over YT,n with the same
boundary as ∆(w,0). We claim that there are no ri –corridors for any i . If there were,
they would be of annulus type, and the short side of the corridor would be labeled by
a cyclically reduced word v(aν0 ,bν0 ) representing the trivial element. Since Aν0 is free
on aν0 ,bν0 , no such corridors can exist. Therefore ∆′ is actually a diagram over XT ,
and Proposition 7.9 says that Area(∆′) Ê Area(∆(w,0)).

Proceeding by induction on d , suppose that d Ê 1 and ∆′ is a reduced diagram over
YT,n of smallest area, with the same boundary as ∆(w,d). As before, there can be no
ri –corridors of annulus type. There will be band type ri –corridors joining occurrences
of r±1

i on the boundary. Note that ri – and r j –corridors cannot cross for any i , j (no 2–
cell is a corridor cell for both corridor schemes). Hence the ri –edges on the boundary
must be paired by corridors in the same way as in ∆(w,d).

Consider an outermost ri –corridor. Its complement in ∆′ is two sub-diagrams, one
of which is a diagram over XT with boundary word

ŵ(aν0 ,bν0 )εw(aν1 ,bν1 )ε · · ·w(aνm ,bνm )ε

for some word ŵ and some ε=±1. Here, ŵ(aν0 ,bν0 ) is the word along the short side
of the corridor. Recall that in VT , the word w(aν1 ,bν1 )ε · · ·w(aνm ,bνm )ε represents the
element w(aν0 ,bν0 )−ε, which moreover is in the free subgroup Aν0 . Since ŵ(aν0 ,bν0 )
is reduced, it must equal w(aν0 ,bν0 ). It follows that the corridor, considered as a sub-
diagram, is identical to the corresponding corridor in ∆(w,d). Also, the part of ∆′ on
the short side of the corridor is a diagram over XT with the same boundary as the
canonical diagram of wε. By Proposition 7.7 its area agrees with that of the canonical
diagram.

Taking all the outermost r –corridors and the sub-diagrams that they separate from
the central region in ∆′, we have found that these have total area equal to the cor-
responding regions in ∆(w,d). Moreover, if we delete these regions, the resulting
boundary word is the boundary word of the corresponding sub-diagram∆(ϕn(w),d−
1) of∆(w,d). By induction, the central portion of∆′ has area equal to that of∆(ϕn(w),d−
1) and we are done. �

9. FOLDED CORRIDORS AND SUBGROUP DISTORTION

The main result of this section is Proposition 9.7 (and its variant Corollary 9.14)
which bounds the distortion of the edge group Aν0 in ST,n . After discussing some
preliminaries, we proceed to study folded corridors, culminating in Lemma 9.5. This
lemma plays an important role in the proof of Proposition 9.7, which occupies the
rest of the section.
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Define the standard generating set for ST,n to be the standard generating set for VT

together with the generators r1, . . . ,rm . Recall that the former generators include all
generators xi and yi , and the peripheral generators aνi , bνi (i = 0, . . . ,m).

For g ∈ Aνi let |g |Aνi
denote the length of the reduced word in the basis aνi , bνi

representing g . Similarly, let ‖g‖Aνi
be the weighted word length of the reduced rep-

resentative (cf. Definition 6.5). Recall that the letters a±1
i and x±1

i have weight 1+p
2

and the letters b±1
i and y±1

i have weight 1. Let the letters r±1
i also be given weight 1.

Now we assign lengths to the edges of YT,n , and correspondingly to the edges in
any van Kampen diagram over YT,n , as follows. Edges labeled by xi or ai are given
length 1+p

2, and all other edges (those labeled yi , bi , or ri ) are given length 1. In this
section, lengths of paths in a van Kampen diagram will always be meant with respect
to these edge lengths.

With this convention, the length of a path in the 1–skeleton will agree with the
weighted length of the word labeling it.

Folded corridors. Recall that each ri –corridor cell has a short side and a long side. In
any ri –corridor, the embedded open annulus or open band inside it separates all of
the short sides of the corridor cells from the long sides.

The boundary of an ri –corridor is a 1–complex containing zero or two ri –edges.
The partial boundary is defined to be the boundary with the interiors of the ri –edges
removed.

If C is an ri –corridor in a reduced diagram, then the short sides of its cells join to
form a component of the partial boundary which is labeled by a reduced word in the
generators aν0 , bν0 . If C were of annulus type, then we would have a cyclically reduced
word in the free group Aν0 representing the trivial element. Hence, C must be of band
type.

Following [BG10], a band type ri –corridor is called folded if it is reduced and every
component of its partial boundary is labeled by a reduced word in the generators of
ST,n . We have noted already that the short sides of corridor cells form a single such
component, which we now call the bottom of the corridor. Any other component is
labeled by a reduced word in the generators aνi , bνi . Again, such a component cannot
be a loop (since Aνi is free) and hence there is only one other component, which we
call the top of the corridor. If w(aν0 ,bν0 ) is the reduced word along the bottom, then
the top is labeled by the reduced word in aνi , bνi representing ϕn(w)(aνi ,bνi ).

Remark 9.1. Given any reduced word w(aν0 ,bν0 ), one can build a folded corridor
with bottom labeled by w . Start by joining corridor cells end to end along ri –edges to
form a corridor with bottom side labeled by w . Then, the long sides of the corridor
cells form an arc labeled by a possibly unreduced word representing ϕn(w)(aνi ,bνi ).
By successively folding together adjacent pairs of edges along the top (with matching
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labels), one eventually obtains a folded corridor. Each folding operation corresponds
to a free reduction in the word labeling the top side of the corridor. The final word
along the top of the folded corridor is uniquely determined (being the reduced form
of ϕn(w)(aνi ,bνi )) but the internal structure will depend on the particular sequence
of folds chosen.

Let C be a folded ri –corridor. Define S ⊂C to be the smallest subcomplex contain-
ing all the ri –edges, and all the open 1–cells which lie in the interior of C (informally,
the seams in C ). Note that S contains exactly those edges of C that are not in the top
or bottom.

Lemma 9.2. Let S0 be a connected component of S. Then

(1) S0 is a tree;
(2) S0 contains exactly one vertex in the top of C ;
(3) every valence-one vertex in S0 lies in the top or bottom of C .

Conclusions (2) and (3) imply that S0 contains at least one vertex in the bottom of
C .

Proof. First note that every 2–cell of C meets the bottom in exactly one edge. Con-
clusion (1) follows immediately since a loop in S0 would separate a 2–cell from the
bottom. For the same reason, S0 cannot contain two or more vertices of the top.

A second observation is that the boundary of every 2–cell is labeled by a cyclically
reduced word (namely, (8.1) or (8.2)). Hence no two adjacent edges of the same cell
can be folded together. Therefore S0 cannot have a valence-one vertex in the interior
of C , whence (3).

It remains to show that S0 contains a vertex of the top. If not, then it is separated
from the top by a 2–cell which then must meet the bottom in a disconnected set,
contradicting the initial observation above. �

Let p be a vertex in the top of C and q a vertex in the bottom. We say that p is above
q if both vertices are in the same connected component of S. We have the following
“bounded cancellation” lemma, which is a restatement of Lemma 1.2.4 of [BG10]:

Lemma 9.3. There is a constant K0 = K0(ϕn) such that if p is a vertex in the top of
a folded corridor and q1, q2 are vertices that are both below p, then the sub-segment
[q1, q2] of the bottom has at most K0 edges. �

For vertices p in the top and q in the bottom, we say that p is nearly above q if there
is a vertex p ′ above q such that p and p ′ are in the boundary of a common 2–cell. It is
clear that every vertex in the top is nearly above some vertex on the bottom.
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Lemma 9.4. There is a constant K1 = K1(ϕn) such that if C is a folded corridor and p is
nearly above q in C , then there is a path in the 1–skeleton of C from p to q, containing
no bottom edges, of length at most K1.

Proof. Let L be the maximum of the boundary lengths of the two ri –corridor cells. Let
p ′ be a vertex above q such that p and p ′ are in the boundary of a common 2–cell e2,
and let S0 be the component of S containing p ′ and q . Let q ′ be the unique bottom
vertex of S0 which is in the boundary of e2. There are paths [p, p ′] in the top and
[p ′, q ′] in S0. These have total length at most L, since they are in the boundary of e2.

Next, any two adjacent bottom vertices in S0 are in the boundary of a 2–cell, and
hence are joined by a path in S0 of length at most L. It follows that q ′ and q are joined
by a path [q ′, q] in S0 of length at most K0L, with K0 given by Lemma 9.3. Now the
path [p, p ′] · [p ′, q ′] · [q ′, q] has length at most K1 = (K0 +1)L. �

Lemma 9.5. There is a constant K2 = K2(ϕn) such that if C is a folded corridor and
[p1, p2], [q1, q2] are sub-segments of the top and bottom, respectively, with p j nearly
above q j for j = 1,2, and u(aνi ,bνi ) is the word labeling [p1, p2], then

‖ϕ−n(u)‖Aνi
− K2 É |[q1, q2]| É ‖ϕ−n(u)‖Aνi

+ K2.

The essential point is that the length of [q1, q2] is determined, up to an additive
error, by the word u labeling [p1, p2]. (It is certainly not determined by the length of
[p1, p2] alone.)

Proof. Let w(aν0 ,bν0 ) be the reduced word labeling [q1, q2]. Let Ŝ be the union of S
and the top of C . For j = 1,2 let [q j , p j ] be a shortest path in Ŝ from q j to p j . Its first
edge is an ri –edge labeled r−1

i , and so the label on [q j , p j ] has the form r−1
i ·v j (aνi ,bνi )

for some reduced word v j . This word has weighted length less than K1 by Lemma 9.4.
The four segments form a relation in ST,n , namely

w(aν0 ,bν0 ) = r−1
i v1(aνi ,bνi )u(aνi ,bνi )v2(aνi ,bνi )−1ri

= ϕ−n(v1)(aν0 ,bν0 )ϕ−n(u)(aν0 ,bν0 )ϕ−n(v2)(aν0 ,bν0 ). (9.6)

This is an equality of elements of the free subgroup Aν0 . Now define

K2 = 2max
{
‖ϕ−n(v)‖Aν0

| v is a word in aν0 ,bν0 of weighted length < K1

}
.

Observe that the left hand side of (9.6) has reduced weighted length |[q1, q2]| and the
right hand side has reduced weighted length within K2 of ‖ϕ−n(u)(aν0 ,bν0 )‖Aν0

, which
is equal to ‖ϕ−n(u)‖Aνi

. �

We turn now to the main result of this section, the bound on edge group distortion.
Recall from the Introduction that the proof is an inductive proof based on Britton’s
Lemma. It falls into two cases, requiring very different methods.
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In the first case, the proof is based on a method from [BB00]. It is the balancing
property of VT that allows us to carry out this argument. The crucial moment occurs
in (9.8) and the choice of index j ′, and the subsequent reasoning.

The second case makes use of folded corridors and Lemma 9.5. The overvall in-
duction argument is based on the nested structure of r j –corridors in a van Kampen
diagram. If these corridors are always oriented in the correct direction, then the ar-
gument based on the balancing property would suffice. If there exists a backwards-
facing r j –corridor, then the inductive process will inevitably land in Case II.

The backwards-facing corridor may then introduce geometric effects that adversely
affect the inductive calculation. When this occurs, we prove that there will be cor-
rectly oriented corridors just behind the first one, and perfectly matching segments
along these corridors, along which any metric distortion introduced by the first cor-
ridor is exactly undone. This occurs in (9.9), using Lemma 9.5. This argument also
depends crucially on σ–corridors.

Proposition 9.7 (Edge group distortion). Given T and n there is a constant K3 such
that if w is a word in the standard generators of ST,n representing an element g ∈ Aν0

then
‖g‖Aν0

É K3‖w‖α
where α= n logm(λ).

Proof. Let K3 = max{1,3K2/2,Λn} where K2 is given by Lemma 9.5 and Λ is the maxi-
mum stretch factor for ϕ−1 with respect to the weighted word length ‖·‖.

The universal cover ỸT,n is the total space of a tree of spaces, with vertex spaces
equal to copies of the universal cover X̃T . Every 1–cell of ỸT,n is either contained in a
vertex space, or is labeled r±1

j for some j and has endpoints in two neighboring vertex
spaces.

We argue by induction on the number of occurrences of r±1
j in w (for all j ). We

may assume that w is a shortest word in the generators of ST,n representing g . This
word describes a labeled geodesic in the 1–skeleton of ỸT,n with endpoints in the same
vertex space. Using the tree structure, one finds a decomposition of w as w1 · · ·wk

where each wi satisfies one of the following:

(1) wi = r j ui r−1
j for some j and wi represents an element of Aν j . Let vi (aν j ,bν j )

be the reduced word representing wi in this case.
(2) wi = r−1

j ui r j for some j and wi represents an element of Aν0 . Let vi (aν0 ,bν0 )
be the reduced word representing wi in this case.

(3) wi is a word in the generators aν j , bν j for some j .
(4) wi is a word in the generators {x j , y j } (allowing all j ).

Let vi = wi in cases (3) and (4), and define v = v1 · · ·vk . The proof now splits into
cases, based on the structure of the decomposition w = w1 · · ·wk .
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• Case IA: all subwords wi are of types (3) or (4). This is simply the base case of
the induction.

• Case IB: either there is a subword wi of type (1), or there are two or more
subwords of type (2).

• Case II: exactly one subword wi is of type (2) and all others are of types (3) or
(4).

Proof in Cases IA and IB. Define the sets

I j = { i | vi is a word in the generators aν j ,bν j },

Ix y = { i | vi is a word in the generators {x j , y j } }.

Note that ‖v‖ν j =
∑

i∈I j
‖vi‖ and ‖v‖x +‖v‖y = ∑

i∈Ix y‖vi‖. We begin by establishing
two claims.

Claim 1: if i ∈ I j and j 6= 0 then ‖vi‖ É K3(m‖wi‖)α. If wi satisfies (3) then the
claim is trivial: ‖vi‖ = ‖wi‖ É K3(m‖wi‖)α since K3,m,α Ê 1. Otherwise, wi satisfies
(1) and wi = r j ui r−1

j where ui represents an element of Aν0 . Let zi be the reduced
word in aν0 , bν0 equal to ui in Aν0 , and note that ϕn(zi )(aν j ,bν j ) = vi in Aν j . Since vi

is reduced we have

‖vi‖ É ‖ϕn(zi )(aν j ,bν j )‖ = ‖ϕn(zi )‖ É λn‖zi‖ = λn‖ui‖Aν0
= mα‖ui‖Aν0

.

Here, the second inequality follows from Lemma 6.6. The final quantity is at most

K3mα(‖wi‖−2)α É K3(m‖wi‖)α

by the induction hypothesis.

Claim 2: if i ∈ I0 ∪ Ix y then ‖vi‖ É K3‖wi‖α. As in Claim 1, if wi satisfies (3) or (4)
then Claim 2 is trivially true. The remaining case is when wi satisfies (2). Now the
claim is an instance of the induction hypothesis: since vi is reduced we have ‖vi‖ =
‖wi‖Aν0

É K3‖wi‖α. Note that the induction hypothesis applies precisely because we

are not in Case II, and wi contains fewer occurrences of the letters r±1
j than w .

Among the indices 1, . . . ,m, choose j ′ to minimize the sum
∑

i∈I j ′‖wi‖. Thus we
have

m
∑

i∈I j ′
‖wi‖ É ∑

i∈I1∪···∪Im

‖wi‖. (9.8)

Observe that v = v1 · · ·vk is a word in the standard generators of VT representing the
element g . Applying Proposition 6.7 (and Remark 6.9) to this word yields the inequal-
ity

‖g‖Aν0
É ‖v‖ν0 +‖v‖x +‖v‖y +‖v‖ν j ′

= ∑
i∈I0

‖vi‖ + ∑
i∈Ix y

‖vi‖ + ∑
i∈I j ′

‖vi‖.
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Then we have

‖g‖Aν0
É ∑

i∈I0∪Ix y

K3‖wi‖α + ∑
i∈I j ′

K3 (m‖wi‖)α

É ∑
i∈I0∪Ix y

K3‖wi‖α + K3

 ∑
i∈I j ′

m‖wi‖
α

by Claims 1 and 2, and

‖g‖Aν0
É ∑

i∈I0∪Ix y

K3‖wi‖α + K3

( ∑
i∈(I1∪···∪Im )

‖wi‖
)α

É K3

(∑
i
‖wi‖

)α
= K3‖w‖α

By (9.8).

Proof in Case II. In this case we write w as wL ŵ wR where ŵ is the subword of type
(2) and wL , wR are products of subwords of types (3) and (4). Thus ŵ = r−1

j ′ ur j ′ for

some index j ′ 6= 0, where u represents an element of Aν j ′ . Let v̂ be the reduced word
in aν0 ,bν0 representing ŵ , and let û be the reduced word in aν j ′ ,bν j ′ representing u.

We proceed by decomposing the word u using the tree of spaces structure of ỸT,n .
First, choose an index j ′′ 6= j ′ from the set {1, . . . ,m}. Then write u = ŵ1 · · · ŵk ′ where
each ŵi satisfies one of the following:

(5) ŵi = r j ′ûi r−1
j ′ or ŵi = r j ′′ûi r−1

j ′′ . Let v̂i be the reduced word in aν j ′ ,bν j ′ or
aν j ′′ ,bν j ′′ representing ŵi .

(6) ŵi = r j ûi r−1
j for some j 6= j ′, j ′′. Let v̂i (aν j ,bν j ) be the reduced word repre-

senting ŵi .
(7) ŵi = r−1

j ûi r j for some j . Let v̂i (aν0 ,bν0 ) be the reduced word representing ŵi .
(8) ŵi is a word in the standard generators of VT . Let v̂i = ŵi in this case.

There is an equality û = v̂1 · · · v̂k ′ in VT . Let ∆ be a van Kampen diagram over XT with
boundary word v̂1 · · · v̂k ′û−1. The arcs in the boundary of ∆ labeled by the words v̂i or
û−1 are called the sides of∆. The side labeled by v̂i is declared to be of type (5), (6), (7),
or (8) accordingly as ŵi is of one of these types. The remaining side will be regarded
as being oriented in the opposite direction, so that its label reads û.

We enlarge ∆ to a diagram ∆′ by adjoining folded r –corridors, as follows. First, for
each subword ŵi of type (5), build a folded corridor Ci whose top is labeled by v̂i

and whose bottom is labeled by the reduced word in aν0 ,bν0 representing ûi in Aν0 .
Adjoin this corridor to ∆ along the side labeled by v̂i . Next, build a folded r j ′–corridor
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C0 whose top is labeled by û and whose bottom is labeled by v̂ . Adjoin it to ∆ along
the side labeled by û. The resulting diagram is ∆′.

Now let σ ⊂ T̂ be the maximal segment whose endpoints correspond to the pe-
ripheral subgroups Aν j ′ and Aν j ′′ . The corridor scheme Sσ defines σ–corridors in ∆.
Every edge in the side labeled û has aσ–corridor emanating from it, landing on a side
of type (5) or (8). (They cannot land on the other sides, because their edges are not
members of Sσ. They cannot land on the side labeled û, because û is reduced; cf. the
proof of Proposition 6.7.) Decompose û as z1 · · ·z` such that

• for each zi , theσ–corridors emanating from the edges labeled by zi either land
on a single side of type (5), or on a union of sides of type (8)

• each zi is maximal with respect to the preceding property.

Let p0, . . . , p` be the vertices along the side labeled û such that for each i , the arc la-
beled by zi has endpoints pi−1 and pi . These vertices lie along the top of the folded
r j ′–corridor C0. Choose vertices q0, . . . , q` along the bottom of C0 such that pi is nearly
above qi for each i and q0, q` are the endpoints of the bottom. Let [pi−1, pi ] and
[qi−1, qi ] denote the segments along the top and bottom, respectively, with the indi-
cated endpoints.

Next define the index sets

I(5) = {i | the σ–corridors emanating from zi land on a side of type (5)},

I(8) = {i | the σ–corridors emanating from zi land on sides of type (8)}

so that I(5)∪I(8) = {1, . . . ,`}. For each i ∈ I(5) let ji be the index such that theσ–corridors
emanating from zi land on the side labeled by v̂ ji .

If C and C ′ are twoσ–corridors emanating from û and landing on the same side v̂ j ,
then every corridor emanating from û between C and C ′ must also land on v̂ j , since
corridors do not cross. Moreover, if C and C ′ are adjacent in û then they will land on
adjacent edges of v̂ j ; otherwise, anyσ–corridor emanating from v̂ j between C and C ′

is forced to land on v̂ j , contradicting that v̂ j is reduced.
These remarks imply that for every i ∈ I(5), the corridors emanating from zi land

on a connected subarc αi of the side labeled v̂ ji , and in fact the label along αi is the
word zi (aν j ′ ,bν j ′ ) or zi (aν j ′′ ,bν j ′′ ), by Remark 6.3. Note that αi lies along the top of
the r –corridor C ji . Let βi be a subarc of the bottom of C ji such that the endpoints of
αi are nearly above those of βi . Since [pi−1, pi ] and αi are labeled by the same word,
we have

||[qi−1, qi ]|− |βi || É 2K2 (9.9)

by Lemma 9.5. Therefore,

|[qi−1, qi ]| É ‖û ji ‖Aν0
+ 2K2.
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Applying the induction hypothesis to û ji we obtain

|[qi−1, qi ]| É K3‖û ji ‖α + 2K2

= K3(‖ŵ ji ‖−2)α + 2K2. (9.10)

Next, if i ∈ I(8), we have

|[qi−1, qi ]| É ‖ϕ−n(zi )‖Aν j ′
+ K2

É Λn‖zi‖ + K2

É K3‖zi‖ + K2 (9.11)

by Lemma 9.5. Now define the disjoint sets

J(5) = { ji | i ∈ I(5)},

J(8) = { j | ŵ j is of type (8)}

and note that |J(5)| = |I(5)|. Summing the inequalities (9.10) and (9.11) over all i ∈
I(5) ∪ I(8) we obtain

‖v̂‖ = ∑̀
i=1

|qi−1, qi | É K3

( ∑
i∈I(5)

(‖ŵ ji ‖−2)α
)
+ K3

( ∑
i∈I(8)

‖zi‖
)
+ (

2|I(5)|+ |I(8)|
)

K2.

By considering σ–corridors we have
∑

i∈I(8)
‖zi‖ É∑

j∈J(8)
‖ŵ j‖, and therefore

‖v̂‖ É K3

( ∑
j∈J(5)

(‖ŵ j‖−2)α
)
+ K3

( ∑
j∈J(8)

‖ŵ j‖
)
+ (

2|I(5)|+ |I(8)|
)

K2. (9.12)

Now observe that no two adjacent indices can both be in I(8), by the maximality prop-
erty of the words zi . It follows that |I(8)| É |I(5)|+1, and since K3 Ê 3K2/2, we have(

2|I(5)|+ |I(8)|
)

K2 É (
3|I(5)|+1

)
K2

É K3
(
2|I(5)|+2

)
.

Combining this with (9.12) we obtain

‖v̂‖ É K3

(
2 + ∑

j∈J(5)

(
(‖ŵ j‖−2)α+2

)) + K3

( ∑
j∈J(8)

‖ŵ j‖
)

É K3

(
2α+ ∑

j∈J(5)

‖ŵ j‖α+
∑

j∈J(8)

‖ŵ j‖α
)

É K3

(
2+

k ′∑
j=1

‖ŵ j‖
)α

= K3‖ŵ‖α. (9.13)

Finally, consider the words wL and wR , and note that v = wL v̂ wR . Choose any index
j ∈ {1, . . . ,m} and apply Proposition 6.7/Remark 6.9 to obtain

‖g‖Aν0
É ‖v‖ν j +‖v‖ν0 +‖v‖x +‖v‖y É ‖v‖ = ‖wL‖+‖v̂‖+‖wR‖.
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Combining this with (9.13) yields

‖g‖Aν0
É ‖wL‖+K3‖ŵ‖α+‖wR‖ É K3‖wL ŵ wR‖α = K3‖w‖α.

This completes the proof in Case II, and the proof of the proposition. �

Corollary 9.14. Given T and n there is a constant K4 such that if w is a word in the
standard generators of ST,n representing an element g ∈ Aν0 then

|g |Aν0
É K4|w |α

where α= n logm(λ).

Proof. One simply enlarges the constant K3 to K4, to account for the maximum scaling
factor between | · | and ‖·‖. �

10. THE DEHN FUNCTION OF ST,n

Before proceeding we need to establish some additional properties of σ–corridors.
First, we identify the subgroups of VT generated by the labels along the sides of σ–
corridors. Fixing σ, this subgroup will be denoted Sσ (the side subgroup). Looking
at the corridor cells in Figure 5, it is clear that Sσ is generated by the subgroups F j

for various j ; namely, whenever σ passes through a triangle in the (|T |+2)–gon with
corners i , j ,k, if σ separates i from j and k, then F j and Fk are in Sσ.

Lemma 10.1. The side subgroup Sσ is the free product of the factors F j ×Fk , with one
factor for each triangle in the (|T |+2)–gon through which σ passes.

Proof. First, there is a surjective homomorphism from the free product onto Sσ, in-
duced by inclusion of the subgroups F j ×Fk . Injectivity then follows from Lemma 5.1,
once we observe that in each vertex group Fi ×F j ×Fk of VT , the subgroup F j ×Fk has
trivial intersection with the edge groups Ai ⊂ Fi ×F j and Ak ⊂ Fk ×Fi . �

Next we need some observations about corridors in diagrams over the subgroup
F0 ×F1 ⊂ V . Let X01 ⊂ X be the subcomplex whose 2–cells have boundary edges la-
beled by the elements x0, y0, x1, y1, a0,b0. It has two quadrilateral cells and four trian-
gular cells (see Figure 5). Its fundamental group is F0 ×F1. Define two orientable cor-
ridor schemes S0,S1 over X01 as follows: S0 contains the edges labeled x0, y0, a0,b0

and S1 contains the edges labeled x1, y1, a0,b0. Note that the side subgroup associ-
ated with S0 is F1, and the side subgroup of S1 is F0.

Remarks 10.2. Let ∆ be a reduced diagram over X01.
(1) Let α be a path in the 1–skeleton of ∆ along the side of an S0–corridor, and

let β be a path along the side of an S1–corridor. Then α and β intersect in at most
one point. If there were two points in the intersection, then the labels along α and β
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between these points give non-trivial elements of F1 and F0 respectively, representing
the same element of F0 ×F1.

(2) Every 2–cell of∆ is contained in both an S0– and an S1–corridor. This is imme-
diate by examining the corridor cells for S0 and S1.

(3) There are no S0– or S1–corridors of annulus type (because the side subgroups
are free and ∆ is reduced).

Proposition 10.3 (Area in VT ). Given T there is a constant K5 with the following prop-
erty. Suppose w and z(aν` ,bν`) represent the same element of Aν` ⊂ VT , where z is
reduced and w decomposes as w1 · · ·wk where each wi is a reduced word in the gener-
ators x j , y j for some j , or the peripheral generators aν j ,bν j for some j . Let I be the set
of pairs of indices (i , j ) such that either i 6= j or i = j and wi is not a word in peripheral
generators of VT . Then

Area(w z−1) É K5
∑

(i , j )∈I

|wi ||w j |.

Remark 10.4. Let P be the set of indices i such that wi is a word in peripheral gen-
erators of VT . Then ∑

(i , j )∈I

|wi ||w j | +
∑

i∈P

|wi |2 = |w |2.

Proof of Proposition 10.3. Recall from Remark 4.4 that VT is CAT(0), and therefore its
Dehn function is quadratic. Thus there is a constant C Ê 1 (independent of z, w) such
that Area(w z−1) É C (|w | + |z|)2. Also, |z| É |w | by Proposition 6.7, so Area(w z−1) É
4C |w |2.

The proof now falls into two cases: the generic case and a special case which is
somewhat more difficult. The latter case is when there is an index i ′ such that wi ′ is a
word in the generators aν` ,bν` (the same as z) and |wi ′ | > (1/2)|w |.

Consider first the generic case (that is, whenever wi is a word in the generators
aν` ,bν` we have |wi | É (1/2)|w |). We claim that |wi | É (1/2)|w | for every i ∈ P . To
see this, suppose wi is a word in aν j ,bν j with j 6= ` and let ν j ′ be a peripheral index

not equal to ν j or ν`. Let ŵ be the complement of wi in the cyclic word w z−1. Apply
Proposition 6.7 to obtain

|wi | É |ŵ |ν j ′ +|ŵ |ν j +|ŵ |x +|ŵ |y .

The right hand side counts no letters of z because j , j ′ 6= `. Thus, |wi | É (1/2)|w |.
This claim implies (see Figure 11) that∑

i∈P

|wi |2 É ∑
i 6= j

|wi ||w j |. (10.5)
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|wi |

FIGURE 11. The area of the squares does not exceed the shaded area,
if the side lengths are each at most half the total side length.

From Remark 10.4 we deduce that∑
i∈P

|wi |2 É (1/2)|w |2

and therefore ∑
(i , j )∈I

|wi ||w j | Ê (1/2)|w |2.

Finally, we have

Area(w z−1) É 4C |w |2 É 8C
∑

(i , j )∈I

|wi ||w j |

so we are done by taking K5 Ê 8C .

Next consider the special case: wi ′ is a word in aν` ,bν` and |wi ′ | > (1/2)|w |. Write
w = wL wi ′wR , so that |wL|+ |wR | < |wi ′ |. Note that it will suffice for us to prove that
Area(w z−1) É K5|wi ′ |(|wL|+ |wR |).

Let σ and σ′ be maximal segments in T̂ with common endpoint vν` , which diverge
immediately. That is, their intersection consists of the single edge from the leaf vν`
to its parent vertex in T . This edge lies inside a triangle in the (|T |+2)–gon. Suppose
without loss of generality that this triangle has index triple (0,1,2) and that Aν` = A0 ⊂
F0 ×F1. The vertex group in VT corresponding to this triangle is F0 ×F1 ×F2; denote
this subgroup by V . For concreteness, suppose thatσ separates corner 0 from corners
1 and 2, and σ′ separates corner 1 from corners 2 and 0.

We can express the (|T | + 2)–gon as a union of two smaller sub-diagrams whose
intersection is the (0,1,2) triangle. Note that σ and σ′ each lie wholly inside one of
these sub-diagrams. Thus VT has an expression as A∗V B where A is the fundamental
group of the sub-diagram containing σ and B is the fundamental group of the sub-
diagram containing σ′. See Figure 12. In particular, Sσ ⊂ A, Sσ′ ⊂ B , and A∩B =V .

Let∆ be a reduced van Kampen diagram over XT with boundary w z−1. Think of the
boundary as being two arcs with the same endpoints, labeled by w and z respectively.
Every edge along wi ′ has a σ–corridor emanating from it. Since wi ′ and z are reduced
words in aν` ,bν` , we can argue (as usual) that no σ–corridor has both ends on wi ′

or on z, and that the σ–corridors emanating from wi ′ and landing on z all land on a
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= ∪
σ

σ σ′
σ′ σ

σ σ′

σ′
0 1

2

0 1

2

0 1

2

FIGURE 12. Expressing VT as A∗V B with Sσ ⊂ A and Sσ′ ⊂ B .

connected subarc of the arc labeled z. Theσ–corridors not landing on z must land on
wL or wR , and one finds that these comprise at most 1/3 of the corridors emanating
from wi ′ (because |wi ′ | > |wL|+ |wR |).

Let p1, p2 be the initial and final endpoints of the maximal segment along wi ′ whose
σ–corridors land on z. Let q1, q2 be the analogous points along z, so that pi is joined
to qi by the side of a σ–corridor (i = 1,2). Note that the subsegments [p1, p2] and
[q1, q2] are labeled by the same word in aν` ,bν` , by Remark 6.3.

In a similar fashion, there areσ′–corridors emanating from wi ′ , at least 2/3 of which
land on a connected subsegment of z. Define p ′

1, p ′
2, q ′

1, q ′
2 analogously to p1, p2, q1,

and q2.
Now let [pi , qi ] denote the side of the σ–corridor joining pi to qi (i = 1,2). Define

[p ′
i , q ′

i ] analogously. Note that the label along [p1, q1] represents an element of Sσ ⊂ A.
However, p1 and q1 are also joined by the path [p1, p ′

1] ·[p ′
1, q ′

1] ·[q ′
1, q1] where the first

and third segments run along wi ′ and z respectively. This path represents an element
of B . Therefore, [p1, q1] represents an element of A ∩B = V . By Lemma 10.1 we have
Sσ∩V = F1 ×F2, and so [p1, q1] in fact represents an element of this latter subgroup.
By the same argument, [p2, q2] also represents an element of F1 ×F2.

We need to introduce a little more notation. Let α be the path along the boundary
of ∆ from q1 to p1 which contains the segment labeled wL . Similarly, let β be the
path in the boundary from p2 to q2 which contains wR . Let p0, p3 be the initial and
final endpoints of the segment labeled wi ′ . Let q0, q3 be the endpoints of the segment
labeled z. Note that |[p0, p1]| É |wL| since the σ–corridors from [p0, p1] land on wL .
Similarly, |[p2, p3]| É |wR |. Because |z| É |w |, we have

|[q0, q1]|+ |[q2, q3]| É |wL|+ |[p0, p1]|+ |[p2, p3]|+ |wR |
É 2(|wL|+ |wR |)

and therefore

|α|+ |β| É 4(|wL|+ |wR |). (10.6)

At this point we discard the diagram ∆ and start over with its boundary loop. We
have seen that α and β represent elements gα and gβ of the subgroup F1 ×F2 ⊂ V .
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Attach a segment [q1, p1] to the points q1 and p1, and label it by a reduced word rep-
resenting gα, of the form u(x1, y1)v(x2, y2). Similarly, attach a segment [q2, p2] labeled
by a reduced word u′(x1, y1)v ′(x2, y2) representing g−1

β
to the points q2 and p2. Note

that the loop [p1, p2] · [p2, q2] · [q2, q1] · [q1, p1] is labeled by generators of V , and the
only occurrences of generators of F2 are in the reduced words v and v ′. It follows that
v = v ′.

Now define o1 to be the point along [q1, p1] such that [q1,o1] is labeled by u(x1, y1)
and [o1, p1] is labeled by v(x2, y2). Similarly let o2 be the point on [q2, p2] such that
[q2,o2] is labeled by u′(x1, y1) and [o2, p2] is labeled by v(x2, y2). Attach one more
segment [o1,o2] to the points o1 and o2, labeled by the same word in a0,b0 (= aν` ,bν`)
as [p1, p2] and [q1, q2].

We proceed now to fill the original boundary loop with a van Kampen diagram, in
four parts. Fill the loop α · [p1, q1] with a least-area van Kampen diagram ∆α over XT .
Fill β · [q2, p2] with a least-area diagram ∆β over XT . To estimate the areas of ∆α and
∆β, choose a segment σ′′ ⊂ T̂ which passes through the (0,1,2) triangle and separates
corner 2 from corners 0 and 1. Note that x1, y1 ∈ Sσ′ −Sσ′′ and x2, y2 ∈ Sσ′′ −Sσ′ .
Every edge along [p1, q1] has either a σ′–corridor or a σ′′–corridor in ∆α emanating
from it, and not both. Since the words u(x1, y1), v(x2, y2) are reduced, these corridors
can only land on α. It follows that

|[p1, q1]| É 2|α|. (10.7)

By a similar argument using ∆β, we have

|[p2, q2]| É 2|β|. (10.8)

From (10.7) and (10.8) we deduce that

Area(∆α) É C (3|α|)2 and Area(∆β) É C (3|β|)2.

Two more loops remain to be filled. Let ŵ(a0,b0) be the word labeling [p1, p2]
and [o1,o2]. The loop [p1, p2] · [p2,o2] · [o2,o1] · [o1, p1] is labeled by the commuta-
tor [ŵ(a0,b0), v(x2, y2)]. Adjoin a triangular relator to each edge of [p1, p2] and [o1,o2]
to obtain paths labeled by the word ŵ(x0x1, y0 y1). Now these paths and the paths
[p1,o1], [p2,o2] can be filled using commutator relators. In this way the loop [p1, p2] ·
[p2,o2]·[o2,o1]·[o1, p1] bounds a diagram∆012 over XT of area 2|[p1, p2]|+2(2|[p1, p2]|)|v |.

Finally consider the loop [o1,o2] · [o2, q2] · [q2, q1] · [q1,o1]. It is labeled entirely by
generators of F0 ×F1 and represents the trivial element, so it bounds a least-area dia-
gram ∆01 over X01. Its boundary is labeled by the word

ŵ(a0,b0)u′(x1, y1)−1ŵ(a0,b0)−1u(x1, y1)

with each of the four subwords being reduced. Consider corridors in ∆01 for the cor-
ridor schemes S0 and S1. The S0–corridors can only land on the sides [q1, q2] and
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[o1,o2], and since these sides are labeled by reduced words, each such corridor has
one end on each side. Thus, each edge of [q1, q2] is joined by an S0–corridor to the
edge of [o1,o2] corresponding to the same letter of ŵ .

Consider the arrangement of the S1–corridors in ∆01. Every edge in the boundary
has an S1–corridor emanating from it. There are no corridors of annulus type (see
Remarks 10.2), and corridors cannot join two edges in the same side of the boundary.
If there is a corridor joining [q1,o1] to [q2,o2] then we must have

2|[p1, p2]| É |[q1,o1]|+ |[q2,o2]| (10.9)

and we will be satisfied for the moment. Assume now that no such corridor is present.
Then, the most general arrangement is shown in Figure 13.

m

o1

q1

o2

q2

FIGURE 13. A generic configuration of S1–corridors in ∆01.

Notice that corridors running between [o1,o2] and [q1, q2] will land on edges that
are offset by a fixed amount m É min{|[q1,o1]|, |[q2,o2]|}. In particular an S0–corridor
can be crossed by at most m+1 S1–corridors of this type. There are |[q1,o1]|+|[q2,o2]|
S1–corridors not of this type, so an S0–corridor can cross no more than 2(|[q1,o1]|+
|[q2,o2]|) S1–corridors overall.

By Remarks 10.2, an S0–corridor and an S1–corridor will intersect if and only if
their endpoints are linked (or equal) in the boundary of∆01, and when this occurs, the
intersection will have area 1 or 2. Moreover, every 2–cell of ∆01 is in the intersection
of such a pair. Since every S0–corridor is crossed by at most 2(|[q1,o1]| + |[q2,o2]|)
S1–corridors, we conclude that

Area(∆01) É 4(|[q1,o1]|+ |[q2,o2]|)|[o1,o2]|.

To finish, first suppose we are in the special case where (10.9) holds. Then, the total
perimeter is at most 12(|wL|+ |wR |) by (10.7), (10.8), and (10.6). Then

Area(w z−1) É C (12(|wL|+ |wR |))2 É 144C |wi ′ |(|wL|+ |wR |)

so we require K5 Ê 144C to cover this case.



SNOWFLAKE GEOMETRY IN CAT(0) GROUPS 45

Otherwise, we use our estimates for the areas of the four diagrams∆α,∆β,∆012, and
∆01. Since |[p1, p2]| = |[o1,o2]| = |[q1, q2]| É |wi ′ |, these estimates yield

Area(w z−1) É 9C |α|2 +9C |β|2 + (2|wi ′ |+4|wi ′ ||v |)+4(|u|+ |u′|)|wi ′ |.
Using (10.7) and (10.8) this reduces to

Area(w z−1) É 9C (|α|+ |β|)2 +|wi ′ |(2+8(|α|+ |β|)).

Note that (|α| + |β|) É 4|wi ′ | by (10.6), and a further application of (10.6) yields the
following:

Area(w z−1) É 36C |wi ′ |(|α|+ |β|)+|wi ′ |(2+8(|α|+ |β|))

É (36C +10)|wi ′ |(|α|+ |β|)
É (144C +40)|wi ′ |(|wL|+ |wR |).

Taking K5 Ê 144C +40 completes the proof. �

Proposition 10.10 (Area in ST,n). Given T and n there is a constant K6 with the follow-
ing property. Suppose w and z(aν j ,bν j ) represent the same element of Aν j ⊂ ST,n , where

w is a word in the standard generators of ST,n and z is reduced. Then Area(w z−1) É
K6|w |2α.

We follow the proof of Proposition 5.5 in [BBFS09].

Proof. The proof is by induction on |w |. Let M = max{|ϕn(x)|, |ϕn(y)|, |ϕ−n(x)|, |ϕ−n(y)|}.
Let K6 = M 2K 2

4 K5, where K4 is given by Corollary 9.14 and K5 is given by Proposition
10.3. Write w as w1 . . . wk where each wi either is a word in the standard generators of
VT , or wi = r±1

j ui r∓1
j for some j . Let Ir be the set of indices for which the latter case

occurs, and note that wi represents an element of a peripheral subgroup of VT . Let vi

be the reduced word in the generators of that subgroup representing wi . For i 6∈ Ir let
vi = wi , and define v = v1 · · ·vk .

By Proposition 10.3 we have Area(v z−1) É K5
∑

(i , j )∈I |vi ||v j |. For i ∈ Ir we have
either |vi | É K4|wi |α (if vi ∈ Aν0 ) or |vi | É MK4|ui |α (if ui ∈ Aν0 ), by Corollary 9.14. In
any case (including i 6∈ Ir ) we have |vi | É MK4|wi |α. Therefore,

Area(v z−1) É K6
∑

(i , j )∈I

|wi |α|w j |α. (10.11)

Next note that
Area(w v−1) É ∑

i∈Ir

Area(wi v−1
i )

since wi = vi for i 6∈ Ir . For each term Area(wi v−1
i ), recall that wi = r±1

j ui r∓1
j . Let zi be

the reduced word in peripheral generators representing the same peripheral element
as ui . Apply the induction hypothesis to ui to obtain

Area(ui z−1
i ) É K6|ui |2α = K6(|wi |−2)2α. (10.12)
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One of the words zi , vi is an element of Aν0 , so there is a folded r j –corridor with
boundary word r±1

j zi r∓1
j v−1

i , where one of the boundary arcs labeled zi or vi is the
bottom and the other is the top. The area of this corridor is the length of the bottom,
which is at most M |vi |. As noted above, |vi | É MK4|wi |α, and so

Area(r±1
j zi r∓1

j v−1
i ) É MK4|wi |α.

Together with (10.12) we obtain

Area(wi v−1
i ) É K6((|wi |−2)2α+|wi |α)

É K6|wi |2α (10.13)

for i ∈ Ir . The last inequality above holds exactly as in [BBFS09, Proposition 5.5]: for
numbers x Ê 0 one has (x +2)2α Ê xα(x +2)α+2α(x +2)α Ê x2α+ (x +2)α.

Lastly, add together (10.11) and (10.13) for each i ∈ Ir to obtain

Area(w z−1) É K6
∑

(i , j )∈I

|wi |α|w j |α + K6
∑

i∈Ir

|wi |2α

É K6
∑
i 6= j

|wi |α|w j |α + K6
∑

i
|wi |2α.

The latter quantity is K6|w |2α, as desired. �

Theorem 10.14. Given T and n let m = |T |+1, let λ> 1 be the Perron-Frobenius eigen-
value of ϕ, and let α = n logm(λ). If α Ê 1 then the Dehn function of ST,n is given by
δ(x) = x2α.

Proof. First we establish the lower bound δ(x) < x2α. Let w(x, y) be a monotone
palindromic word (eg. x) and consider the snowflake diagrams∆(w, i ) for i Ê 1. Let ni

be the boundary length of ∆(w, i ). The boundary word has 4mi−1 occurrences of the
letters r j in it, and two adjacent such letters are never separated by more than m|w |
letters from VT . Thus we have

4mi−1 É ni É 4(m|w |+1)mi−1. (10.15)

From the second of these inequalities we obtain

(ni )α É
(

4(m|w |+1)

m

)α
(mα)i

=
(

4(m|w |+1)

m

)α
λni

and so (
m

4(m|w |+1)

)α
(ni )α É λni .
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Next,∆(w, i ) has area at least 6|T ||ϕi n(w)|2, which is the area of the doubled canonical
diagram at its center. There is a constant C such that |ϕk (v)| ÊCλk |v | for every non-
trivial word v . Thus,

Area(∆(w, i )) Ê 6|T |C 2|w |2(λni )2

Ê 6|T |C 2|w |2
(

m

4(m|w |+1)

)2α

(ni )2α.

Taking D = 6|T |C 2|w |2
(

m
4(m|w |+1)

)2α
, we have shown that δYT,n (ni ) Ê D(ni )2α for each

i , because∆(w, i ) is a least-area diagram over YT,n with boundary length ni . By (10.15)
the ratios ni+1/ni are bounded, and so we conclude by Remark 2.1 that δ(x)< x2α.

The upper bound follows immediately from Proposition 10.10: taking z to be the
empty word, Area(w) É K6|w |2α for every word w representing the trivial element of
ST,n . Thus δ(x)4 x2α. �
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