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Abstract

Let G be a group that acts freely on a Λ-tree, where Λ is an ordered
abelian group, and let x, y, z be elements in G. We show that if xpyq =
zr with integers p, q, r ≥ 4, then x, y and z commute. As a result,
the one-relator groups with xpyq = zr as relator, are examples of
hyperbolic and CAT(-1) groups which do not act freely on any Λ-tree.
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1 Introduction

There has recently been a great deal of interest in tree-free groups, that is,
groups which act freely and without inversions by isometries on some Λ-tree.
The principal source of this interest has been related to the solution of the
Tarski problem, where one of the main objects of study, limit groups, have
been shown to act freely on Z

n-trees for some n. Groups that act freely
on Λ-trees — so-called Λ-free groups — generalise free groups in the sense
that Z-free groups are precisely free groups. Moreover, for general Λ, these
groups satisfy properties reminiscent of free groups. For example, they are
torsion-free, closed under free products, and commutativity is a transitive
relation on non-identity elements. In addition, all known examples of finitely
generated Λ-free groups that contain no copy of Z × Z are hyperbolic.

The purpose of this article is to generalise a classical theorem in free
groups to the broad class of tree-free groups. The result of Lyndon and
Schützenberger ([14]) states that any elements x, y, and z of F , a free
group, that satisfy the relation xpyq = zr for p, q, r ≥ 2 commute. (See also
[13], [4], [19], [18], [7].) Therefore all solutions to this equation are contained
in a cyclic subgroup of F . Here we show,

Theorem 3.2 Let G be a group that acts freely, and without inversions, by
isometries on a Λ-tree, where Λ is an ordered abelian group, and let x, y, z

be elements in G. If xpyq = zr with p, q, r ≥ 4, then x, y and z commute.

1



While the argument of Lyndon and Schützenberger relies on combina-
torics of words in the free group, our argument relies on the information
provided by the action via isometries of the group on the Λ-tree.

A Λ-metric space can be defined in the same way as a conventional
metric space with R replaced by Λ. A Λ-tree can be characterised as a
geodesically convex Λ-metric space (X, d) which is 0-hyperbolic and which
satisfies d(x, v)+d(y, v)−d(x, y) ∈ 2Λ for all x, y, v ∈ X (see [5]). When the
group Λ is archimedean the free actions on Λ-trees are well understood. In
particular, the finitely generated groups that act freely on R-trees have been
completely classified by Rips. They are the groups that can be written as a
free product G1⋆G2⋆. . . Gn for some integer n ≥ 1, where each Gi is either a
finitely generated free abelian group or a non-exceptional surface group. In
the non-archimedean case, Martino and O Rourke (see [16]) have provided
examples of Z

n-free groups. Also, it is known that among the groups that
act freely on R

n-trees are the fully residually free groups, or limit groups
([12], [20], [10]). The fact that limit groups are exactly the groups with
the same universal theory as free groups (see [17]) immediately implies that
solutions of xpyq = zr commute in limit groups. We show that in addition
to limit groups, the commutativity of solutions to xpyq = zr holds in all the
groups that act freely on Λ-trees, with some restriction on the exponents.

We would like to point out one intriguing difference in the behaviour
of the equation x2y2 = z2 in free groups versus groups that act freely on
Λ-trees. In free groups if we have elements x, y and z such that x2y2 = z2,
then x, y and z commute, while for general Λ-free groups this is not true,
since the exceptional surface group 〈x, y, z, | x2y2z2 = 1〉 acts freely on a Z

2-
tree ([8]). By the Base-Change Functor Theorem (see Section 2) it follows
that this group acts freely on any non-archimedean tree.

One interesting question to ask is where the arguments for free groups
and tree-free groups must diverge when considering equations. In fact, most
of our techniques work in the various cases we consider for all equations
of the type xpyq = zr, with p, q, r ≥ 2. The real difference seems to be
that in free groups for the cases of small exponents one has to use inductive
arguments on length which cannot work for a general Λ-tree, since there are
generally infinitely many lengths less than any given one. For example, if
p = q = r = 3 we can successfully employ the same techniques we used for
larger values of p, q and r. However, we encountered difficulties in part (3.)
of our proof, when the intersection ∆ of the axes Ax and Ay has exactly the
same length as the shortest of the translations, yq.

Nevertheless, one immediate consequence of our result is that one can
construct many groups which cannot act freely on any Λ-tree. In particular,
if we look at the one-relator groups, defined as follows,

Gpqr = 〈x, y, z |xpyq = zr〉,

we get a family of groups which do not act freely on any Λ-tree, for p, q, r ≥ 4.
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Moreover, these groups are all small-cancellation groups; they are C(6) −
T (4) for all p, q, r ≥ 2, and so are word hyperbolic (see [9]). Therefore we
obtain

Corollary 1.1. The groups Gpqr form a family of word hyperbolic groups
which cannot act freely, and without inversions, by isometries on any Λ-tree.

We note that Chiswell ([6]) has produced a family of word hyperbolic
groups with no non-trivial action on a Λ-tree; any such action by one of these
groups has a global fixed point. In the same spirit, any group which satisfies
Kazdan’s property T has no non-trivial action on a Λ-tree, and so one would
expect that generic hyperbolic groups will not be tree-free. However, the
groups Gpqr do not have property T because their abelianisation is infinite,
which implies that they act non-trivially on an R-tree.

Note that by contrast the groups

〈x1, x2, . . . , xn |x
α1

1 xα2

2 · · · xαn

n = 1〉

are expressible as amalgamated free products of free groups over maximal
cyclic subgroups for n ≥ 4 provided at least four αi are non-zero. It follows
that these groups are Z

2-free (see [1],[16]). In fact, these groups are fully
residually free groups ([2], [3]).

In the final section of the paper we show that these groups Gpqr have
CAT(-1) structures. This question arises naturally since, intuitively, a re-
sult true for tree-like structures often has a weaker analogue for hyperbolic
structures. Our aim, initially, was to try to provide examples of word hy-
perbolic groups which do not have CAT(-1) structures, using the sorts of
length arguments we employ for the case of Λ-trees. While this naive ap-
proach doesn’t seem to work, there is still some hope that the arguments
may provide some restrictions to the possible CAT(-1) structures, in par-
ticular translation lengths. The aim would then be to construct multiple
HNN-extensions from the groups Gpqr which are word hyperbolic via the
Bestvina and Feighn Combination Theorem on the one hand, and which vi-
olate the translation length restrictions for CAT(-1) structures on the other
hand.

2 Background

A complete account of Λ-trees is given in [5]. Here we recall the basic
relevant definitions and results. An ordered abelian group is an abelian
group Λ, together with a total ordering ≤ on Λ, compatible with addition.
For a ≤ b, we define [a, b]Λ = {x ∈ Λ | a ≤ x ≤ b}. A Λ-metric space (X, d)
can be defined in the same way as a conventional metric space. That is,
d : X × X → Λ is symmetric, satisfies the triangle inequality and satisfies
d(x, y) = 0 if and only if x = y. A segment in X is the image of an isometry
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α : [a, b]Λ → X for some a, b in Λ, with α(a), α(b) the endpoints of the
segment. A Λ-metric space is geodesic if for all x and y in X there is a
segment [x, y] with endpoints x and y.

Definition 2.1. A Λ-tree is a geodesic Λ-metric space (X, d) such that:

(a) if two segments of (X, d) intersect in a single point, which is an endpoint
of both, then their union is a segment;

(b) the intersection of two segments with a common endpoint is also a
segment.

It follows that there is a unique segment having x and y as endpoints.
We denote this segment by [x, y]. From now on, X shall denote a Λ-tree.
We note that a subtree of X is a subset A ⊆ X such that x, y ∈ A implies
[x, y] ⊆ A.

Isometries of Λ-trees are classified, just as those of ordinary trees, and
come in three distinct types: inversions, elliptic and hyperbolic isometries.
Elliptic isometries are those which fix some point in the tree, inversions
are those which do not fix a point but whose square does and hyperbolic
isometries are the remaining ones. It is usually convenient (and no loss
of generality, see 2.4) to assume that all isometries are either elliptic or
hyperbolic, as we shall now do.

For every isometry, g, of X, there is a well defined translation length,

‖g‖ = min {d(x, gx) | x ∈ X}.

It can be shown that this minimum is always realised, so that it is equal to
zero for elliptic elements and is strictly positive for hyperbolic ones. One
then defines Ag, the characteristic set or axis of g, as

Ag = {x ∈ X | d(x, gx) = ‖g‖}.

For an elliptic element this is simply the fixed subtree, and for a hyperbolic
element it is the maximal invariant linear subtree of X on which the isometry
acts by translation. For an isometry, g, of X the characteristic set is also
equal to

Ag = {p ∈ X | [g−1p, p] ∩ [p, gp] = {p}}.

It is an easy exercise to verify the following,

Lemma 2.2. If g is a hyperbolic isometry and n is a non-zero integer, then
‖gn‖ = |n|‖g‖ and Ag = Agn .

To better visualise axes of translation in Λ-trees, especially for hyperbolic
elements, we provide Figure 1. We remark that if [p, x] ∩ Ag = {x} then p,
x, gx and gp are collinear in this order.
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gppg−1p

gxxg−1x Ag

‖g‖

Figure 1: Axis of translation Ag

In a Λ-tree, X, every triple of points, p1, p2, p3 has a Y -point, Y (p1, p2, p3),
which uniquely lies on all segments [pi, pj ], for i 6= j. The characteristic set
of an isometry g is also equal to {Y (g−1p, p, gp) | p ∈ X}.

If g and h are hyperbolic isometries of X such that Ag ∩ Ah 6= ∅, and
g and h translate in the same direction along Ag ∩ Ah, then we say that g

and h meet coherently. If Ag ∩ Ah 6= ∅ and g and h translate in different
directions along Ag ∩ Ah, then g and h meet incoherently.

Now let G be a group that acts on X via isometries. In this paper
we consider only free actions, that is, actions without inversions in which
no non-trivial element of G fixes a point in the tree. Thus all non-trivial
isometries are hyperbolic.

One of the characteristics of free actions on Λ-trees is that for gh 6= hg we
have Ag∩Ah is a segment of length not exceeding ‖g‖+‖h‖, since otherwise
the commutator of g and h would be an elliptic element, contradicting the
freeness of the action. We state this formally, because of its importance,
even though it amounts to a fairly trivial observation.

Lemma 2.3 ([5], Remark, page 111). Let G be a group acting freely without
inversions on a Λ-tree, and let g, h ∈ G. Then if g and h do not commute,
Ag∩Ah cannot contain a segment of length greater than or equal to ‖g‖+‖h‖.
Conversely, if g and h commute, they share an axis and hence Ag ∩Ah will
contain a segment of length greater than or equal to ‖g‖ + ‖h‖.

One property of Λ-free groups that we will use in this paper is that
of commutative-transitivity of non-identity elements, which is equivalent to
saying that centralisers of non-identity elements are abelian and follows from
the fact that two non-identity elements commute if and only if they have
the same axis. Therefore, if F is a non-abelian free group, F × Z is not
tree-free. However, letting T denote the Cayley graph of F , F × Z acts on
the contractible space T × R, which fails to be an R-tree under the natural
sum metric since property (a) of Definition 2.1 is not satisfied. However, we
note that it is possible to make T ×R into an R-tree (with a finer topology)
analogous to the two-sided comb metric on R

2; in this metric, F × Z no
longer acts isometrically.

Another useful fact about actions on Λ-trees is the device that relates
actions on Λ1-trees to actions on Λ2-trees, as in the following theorem.
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Theorem 2.4 ([15], [5], Corollary 2.4.9, page 76). (Base-Change Func-
tor) Let h : Λ1 → Λ2 be an order preserving homomorphism between or-
dered abelian groups and let G be a group acting by isometries on a Λ1-tree,
(X1, d1). Then there is a Λ2-tree, (X2, d2) on which G acts by isometries
and a mapping φ : X1 → X2 such that

(i) d2(φ(x), φ(y)) = h(d1(x, y)), for all x, y ∈ X1,

(ii) φ(gx) = gφ(x) for all g ∈ G and x ∈ X1,

(iii) ‖g‖X2
= h(‖g‖X1

) for all g ∈ G.

For the X2 constructed in the proof of Theorem 2.4 we have that if the
action of G on X1 is free and h is injective, then the action of G on X2 is
also free. In particular we can construct the barycentric subdivision X ′ of
X1 by taking the endomorphism h to be λ → 2λ; the resulting action is then
without inversions.

Note also that since Z
n embeds in R

n every free action on a Z
n-tree gives

rise to a free action on an R
n-tree.

3 The main theorem

The proof of our main theorem will be a length based argument relying on
the analysis of the various configurations of axes. Formally we shall argue
by contradiction by assuming xpyq = zr in a tree-free group, for x, y, z

which do not commute. By commutative-transitivity, this is equivalent to
the assumption that no two of x, y, z commute, which is expressed in the
proof via Lemma 2.3.

The proof itself is elementary from the point of view of Λ-tree theory,
though the justification of the figures we provide would be rather technical
from first principles. However, we should stress that the technical proofs
we refer to are largely formal demonstrations that one’s geometric intuition
works perfectly well in the context of Λ-trees. The following Lemma provides
a useful tool for determining the position of axes, which is a crucial part of
our proof.

Lemma 3.1. Let u, v be distinct points in a Λ-tree, X, and g a hyperbolic
isometry of X. Then if u, v, ug, vg are collinear in the order given, all the
points u, v, ug, vg must lie on the axis of g.

Informally, one chooses a point u which one wants to show is on the
axis of g, and a point v, ‘close’ to u in the positive g direction and checks
collinearity of the images in the given order.

We shall now present three Lemmas which describe the axis of a product
of two elements, depending on how the original axes intersect. These are all
standard results which we recall here so as to more easily refer to them in
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our main argument. The detailed proofs of each of these Lemmas may be
found in [6], however we also provide more informal justifications based on
Lemma 3.1.

Lemma 3.2 (Lemmas 3.2.2 and 3.3.1, [5]). Let g and h be hyperbolic isome-
tries of a Λ-tree (X, d).

• If Ag ∩Ah = ∅, then ||gh|| = ||g||+ ||h||+ 2d(Ag , Ah). (See Figure 2.)

u

v

h−1u

h−1g−1u

h−1g−1v

g−1u

g−1v Ag

Ah

Figure 2: Disjoint axes

• If Ag and Ah meet coherently, then ||gh|| = ||g|| + ||h||, (See Figure 3
for a possible configuration of points.)

u v

h−1u

h−1g−1u

gu

g−1u Ag

Ah

Figure 3: Coherent axes

Proof. To prove the first statement, we shall simply justify Figure 2 and
appeal to Lemma 3.1, since it is clear that d(h−1g−1u, u) = ||g|| + ||h|| +
2d(u, v).

The segment [u, v] meets the Ag only at v, therefore [g−1u, g−1v] is a
segment that meets the Ag only at g−1v. Hence g−1u, g−1v, u are collinear,
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and [g−1u, u] meets the Ah only at u. So h−1g−1u, h−1g−1v and h−1u are
collinear and [h−1g−1u, h−1u] meets Ah only at h−1u. One then applies
Lemma 3.1 to the points h−1g−1u, h−1g−1v, u, v to deduce that h−1g−1u is
on the axis of gh.

The second part of the lemma is justified similarly. If ∆ ≥ ||g|| + ||h||
then Ag = Ah and the stated equality is clear. Otherwise Ag ∩ Ah is a
segment [u, v] where u ∈ [g−1u, v] ([5]); that is, v lies in the positive Ag

direction from u. Then [g−1u, u] meets Ah only at u, and [h−1g−1u, h−1u]
meets Ah only at h−1u. Since gu is in the positive Ag direction from u,
we can apply Lemma 3.1 to the points h−1g−1u, h−1u, u, gu to show that
h−1g−1u is on the axis of gh. The only possible ambiguity is whether gu is
on the left or right of v, but this makes no difference to the argument.

Lemma 3.3 (Lemma 3.3.3, [5]). Let g and h be hyperbolic isometries of a
Λ-tree (X, d) which meet incoherently, and let ∆(g, h) be the intersection of
Ag and Ah. If |∆(g, h)| < ||h|| ≤ ||g||, then

• gh meets g, h coherently,

• ||gh|| = ||g|| + ||h|| − 2|∆(g, h)|, and the configuration can be seen in
Figure 4.

u v

h−1u

gu
ghv

Ag

Ah

Agh

hv

Figure 4: Incoherent axes - small intersection

Proof. We identify four ordered collinear points that will allow us to use
Lemma 3.1. The positions of the points h−1u and gu can be immediately
deduced. We only need to show that v, gu and ghv are collinear, and occur
in this order. It is clear that hv is in the positive direction of Ah from u.
Since the segment [u, hv] meets Ag only at u, [gu, ghv] meets Ag only at gu,
and we are done.
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Lemma 3.4 (Lemma 3.3.4, [5]). Let g and h be hyperbolic isometries of a
Λ-tree (X, d) which meet incoherently, and let ∆(g, h) be the intersection of
Ag and Ah. If ||h|| < |∆(g, h)| ≤ ||g||, then

• gh meets g, h−1 coherently,

• ||gh|| = ||g|| − ||h||, and the configuration can be seen in Figure 5.

u v
h−1uhv

ghv

gu

Ag

Ah

Agh

Figure 5: Incoherent axes - large intersection

Proof. One can easily establish that the points [h−1u, v, gu, ghv] are collinear
and then apply Lemma 3.1. Arguments similar to those given in Lemma 3.3
can then be used to show that Agh∩Ah = [h−1u, v] and Agh∩Ag = [v, ghv].

Lemma 3.5 (Lemma 3.3.5, [5]). Let g, h and gh be hyperbolic isometries
of a Λ-tree (X, d) such that g and h meet incoherently, and let ∆(g, h) be
the intersection of Ag and Ah. If ∆ = |∆(g, h)| = ||h|| < ||g||, and w =
Y (h−1g−1v, v, ghv) then

• gh meets g coherently. Agh ∩ Ag = [w, ghw],

• Agh ∩ Ah is either empty or a single point. The latter case occurs if
and only if w = v, which implies {w} = Agh ∩ Ah,

• ||gh|| = ||g|| − ||h|| − 2d(v,w), and the configuration can be seen in
Figure 6.

Proof. Since the axis of gh is equal to {Y (h−1g−1p, p, ghp) : p ∈ X}, it is
immediate that w ∈ Agh. It is clear that ghv = gu is on Ag, in the positive
Ag direction from v. Next note that [g−1v, u] is a segment of length ‖g‖−∆
which meets Ah only in the point u. Therefore, [h−1g−1v, v] is a segment of
the same length which only meets Ah in the point v. Hence, if h−1g−1v were
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u v

h−1g−1v

g−1v

h−1g−1w

g−1w

hw w

Ag

Ah

Agh

ghw

ghv

Figure 6: Incoherent axes - exact intersection

to lie on Ag, it would have to be in the positive Ag direction from v and by
comparing lengths it would have to be equal to ghv = gu, contradicting the
fact that gh is hyperbolic. Thus h−1g−1v does not lie on Ag.

Now observe that w is on the axis of g, since Y (h−1g−1v, v, ghv) ∈
[v, ghv] = [v, gu] ⊆ Ag; also note that ghw = Y (v, ghv, (gh)2v) ∈ [v, ghv] ⊆
Ag. Thus [v, ghv] = [v,w]∪ [w, ghv] and we shall prove that ghw ∈ [w, ghv].
We shall therefore argue by contradiction and assume that ghw ∈ [v,w].
Since ghv, ghw ∈ Ag this would imply that (gh)2w ∈ Ag. Moreover, as w ∈
[v, ghv], ghv must be in the positive Ag direction from w. Clearly, (gh)2w ∈
[ghv, ghw] and so by comparing lengths, (gh)2w = w, which contradicts the
assumption that gh is hyperbolic.

To completely justify the picture the reader should also satisfy them-
selves that the segment [w, v] can only meet Agh at w. This is because
we already know that Agh contains h−1g−1w,w, ghw and that it is a lin-
ear set. However, the only point on [w, v] which can be collinear with all of
h−1g−1w,w and ghw (in some order) is w itself. Similarly, [ghw, ghv]∩Agh =
{ghw} and h−1g−1v, h−1g−1w] ∩ Agh = {h−1g−1w}. Thus Ag ∩ Agh =
[w, ghw].

Now one can easily compute ||gh|| = d(hw, ghw)−2d(v,w)−|∆(g, h)| =
||g|| − ||h|| − 2d(v,w), using the fact that w is on the axis of gh.

We now proceed with the proof of the main theorem.

Theorem 3.6. Let G be a group that acts freely, and without inversions, by
isometries on a Λ-tree, where Λ is an ordered abelian group, and let x, y, z
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be elements in G. If xpyq = zr with p, q, r ≥ 4, then x, y and z commute.

Proof. Let us assume that x, y and z do not commute and let Ax, Ay and
Az be the axes of translation of x, y and z, respectively. By Lemma 2.2 we
know that Ax = Axn and ‖xn‖ = |n|‖x‖ (the same is clearly true for y and
z) for every non-zero integer n. We can assume without loss of generality
that p, q, r are positive and,

r‖z‖ ≤ q‖y‖ ≤ p‖x‖. (1)

If Ax ∩ Ay = ∅, then by Lemma 3.2,

r‖z‖ = ‖zr‖ = ‖xpyq‖ > ‖xp‖ + ‖yq‖ = p‖x‖ + q‖y‖,

which contradicts assumption (1).
Now let us assume that Ax ∩ Ay 6= ∅. Let ∆(x, y) be the intersection of

the two axes, and let ∆ = |∆(x, y)| ∈ Λ be the length of this segment. Since
we assume that x and y do not commute and the action is free, by Lemma
2.2

∆ < ‖x‖ + ‖y‖. (2)

If Ax and Ay meet coherently, then by Lemma 3.2

r‖z‖ = ‖zr‖ = ‖xpyq‖ = ‖xp‖ + ‖yq‖ = p‖x‖ + q‖y‖,

which also contradicts assumption (1).
Now let us assume that Ax and Ay meet incoherently. Let ∆(x, z) and

∆(y, z) be the intersection of Ax and Az, and Ay and Az, respectively. Then
we have three cases to consider, depending on the length of ∆ relative to
‖yq‖.

1. Let us first assume that the intersection of Ax and Ay is relatively
small:

∆ < ‖yq‖. (3)

Then by Lemma 3.3, setting g = xp and h = yq, Az meets both Ax

and Ay coherently, and we have the configuration as in Figure 7.

Since ‖zr‖ ≤ ‖yq‖ and ‖zr‖ = ‖xp‖ + ‖yq‖ − 2∆ we have

∆ ≥
‖xp‖

2
(4)

Inequalities (2) and (4) give (p − 2)‖x‖ < 2‖y‖ and by using the
assumption (1) we also get (q − 2)‖y‖ < 2‖x‖.

By putting these inequalities together we get that, if p ≥ 4,

(q − 2)‖y‖ < 2‖x‖ ≤ (p − 2)‖x‖ < 2‖y‖. (5)

This implies q < 4, which is not in our range, and so this configuration
cannot happen.
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u v

y−qu

xpu
x

p
y

q
v

Ax

Ay

Az

Figure 7: Incoherent axes - small intersection

2. Let us now assume that
∆ > ‖yq‖, (6)

as in Figure 8.

u v
y−quyqv

xpyqv

xpu

Ax

Ay

Az

Figure 8: Incoherent axes - large intersection

Note that if ∆ > ‖xp‖, then ∆ > max{‖xp‖, ‖yq‖} ≥ max{2‖x‖, 2‖y‖}

≥ ‖x‖ + ‖y‖, contradicting our assumption (2). Therefore, ‖yq‖ <

∆ ≤ ‖xp‖.

This is exactly the situation of Lemma 3.4, so if we set g = xp, h = yq,
then Az = Agh meets Ax coherently and Ay incoherently, and

‖zr‖ = ‖xp‖ − ‖yq‖. (7)

Since x, y and z do not commute,

‖x‖ + ‖z‖ > |∆(x, z)| = ‖zr‖ =⇒ ‖x‖ > (r − 1)‖z‖ (8)

and (2) together with (6) give

‖x‖ > (q − 1)‖y‖. (9)
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Since p ≥ 4 we have

‖xp‖ = ‖xp−4‖ + ‖x2‖ + ‖x2‖ > ‖xp−4‖ + q‖y‖ + r‖z‖

as q ≥ 3 and r ≥ 3 implies 2‖x‖ > q‖y‖ and 2‖x‖ > r‖z‖ by (8) and
(9). This contradicts (7).

3. The last case to consider is ∆ = ‖yq‖. Note that in this case, ∆ < ‖xp‖
by (1), since otherwise y−qxp would be elliptic. Therefore, we are in
the situation described in Lemma 3.5, setting g = xp and h = yq.

u v
tt′

w

xpyqw

Ax

Ay

Az

Figure 9: Incoherent axes - exact intersection

By (2) the above equality gives (q − 1)‖y‖ < ‖x‖, which implies ∆ =
‖yq‖ < 2‖x‖ since q > 2. Using the notation from Lemma 3.5, let w be
Y (y−qx−pv, v, xpyqv), and let l = d(v,w). From Lemma 3.5 [w, xpyqw]
is the intersection of Ax and Az and,

|∆(x, z)| = ‖zr‖ = ‖xp‖ − ‖yq‖ − 2l (10)

We will show that
‖x‖ < ∆ < 2‖x‖ − 2l. (11)

Suppose that the second inequality does not hold. Then, passing to the
barycentric subdivision if necessary, there exist points t ∈ [v,w] and
t′ ∈ [yqw, u] such that d(t, t′) = 2‖x‖ and t′ = yqt (see Theorem 2.4).
This implies x2yqt = t and so x2yq is an elliptic element, a situation
possible only if yq = x−2. However, by commutative-transitivity this
implies that x and y commute, which contradicts our initial assump-
tion.

Now let us assume the first inequality of (11) does not hold, that is,
∆ ≤ ‖x‖. If ∆ + 2l ≥ ‖x‖ then we can repeat the previous argument
to show that xyq is an elliptic element, which implies that x and y
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commute, and we obtain a contradiction. So ∆ + 2l < ‖x‖. Since x

and z do not commute, we have |∆(x, z)| < ‖x‖ + ‖z‖, which implies
‖zr‖ < ‖x‖+ ‖z‖. But ∆ + 2l < ‖x‖ and (10) imply ‖z‖ > (p− 2)‖x‖,
which is false by (1). This concludes the proof of (11).

It follows from (10) and (11) that ‖zr‖ > (p− 2)‖x‖. Since we assume
that x and z do not commute we get |∆(x, z)| = ‖zr‖ < ‖x‖+ ‖z‖, so
in conclusion (p − 3)‖x‖ < ‖z‖, which contradicts (1) if p, q ≥ 4.

4 CAT(-1) Structures

In this section we show that the groups

Gpqr = 〈x, y, z |xpyq = zr 〉

are all CAT(-1). As mentioned in the introduction, the original motivation
for studying these CAT(-1) structures, was to see if certain multiple HNN
extensions (described in Remark 4.2 below) of Gpqr gave examples of hyper-
bolic groups which are not CAT(-1). We do not know whether or not these
HNN groups are CAT(-1). However they should admit high dimensional
CAT(0) structures by the techniques of Hsu and Wise ([11]).

Proposition 4.1. Let p, q, r ≥ 2 be integers. The groups

Gpqr = 〈x, y, z |xpyq = zr 〉

admit CAT(-1) structures corresponding to each isometry class of triangles
in the hyperbolic plane.

Proof. In order to see that the groups Gpqr are all CAT(-1), fix an arbitrary
triangle in the hyperbolic plane with positive angles α, β and γ. Subdivide
the side opposite the angle α (respectively β, γ) into p (respectively q, r)
subsegments of equal length, and label the subsegments by x (respectively
y, z−1) as shown on the left side of Figure 10.

The quotient space of this triangle obtained by isometrically identifying
all the x edges (respectively y-edges, z-edges) is a cell complex, with one
vertex, three 1-cells (labelled x, y and z respectively) and a single 2-cell
corresponding to the triangle. This cell complex is a presentation 2-complex
for the group Gpqr. It is a piecewise hyperbolic 2-complex.

The link of the single vertex is the metric graph shown on the right
side of Figure 10. There are p − 1 edges from x+ to x−, q − 1 edges from
y+ to y−, and r − 1 edges from z+ to z−, all of length π. The remaining
three edges have lengths α, β and γ as indicated in the figure. There are no
nontrivial loops in the link of length less than 2π. Thus the link is a CAT(1)
metric graph, and the 2-complex is a locally CAT(-1) presentation complex
for Gpqr.
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Figure 10: 2-cell of Gpqr presentation 2-complex and vertex link.

Remark 4.1. There are 3-dimensional CAT(-1) structures for Gpqr too.
One way to see this is to note that Gpqr is the fundamental group of the
2-complex obtained from a “thrice punctured sphere” (compact, orientable
surface with three circle boundary components and with Euler characteristic
-2) by wrapping one boundary circle p times around a target circle, wrapping
another boundary circle q times around a second target circle, and wrapping
the third boundary circle r times around a third target circle. This thickens
up to give a compact, hyperbolic 3-manifold with boundary an orientable
surface of genus 2.

Extracting the combinatorial information from the previous description,
we can see that the Gpqr are the fundamental groups of graphs of groups
with underlying graph a tripod, edge groups all infinite cyclic, valence 1
vertex groups all infinite cyclic, and valence 3 vertex group being free of
rank 2. The inclusions from the edge groups to the valence 3 vertex group
map to generators a, b and their product ab. The inclusion maps from the
edge groups to the valence 1 vertex groups are just multiplication by p, q

and r.

Remark 4.2. It is easy to produce hyperbolic groups from the Gpqr via
multiple HNN extensions over infinite cyclic subgroups. For instance, one
can add a stable letter which conjugates one generator to another, add
another stable letter which conjugates a generator to a commutator of two
generators, and so on. One uses the Bestvina-Feighn combination theorem
after each HNN extension to ensure that the resulting groups are hyperbolic.
The group Gpqr is a subgroup of these multiple HNN groups. Therefore,
if these HNN groups are CAT(-1), one gets an action of Gpqr by semi-
simple isometries on a CAT(-1) space with various restrictions on translation
lengths.

The graph of free groups over infinite cyclic edge groups viewpoint of
the Gpqr in Remark 4.1 leads to a large class of CAT(0) structures. The
Sageev construction techniques being developed by Hsu and Wise will give
lots of new CAT(0) cubical structures for the Gpqr. Their techniques should
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also apply to give CAT(0) cubical structures for the hyperbolic multiple
HNN extensions of the Gpqr. But these appear to be very far from CAT(-1)
structures.
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