a'05: MATH 2513–001 Discrete Mathematics		Noel Brady	
Monday 11/21/2005	Midterm III	10:30am–11:20am	
Name:	Student ID:		

Instructions.

- 1. Attempt all questions.
- 2. Do not write on back of exam sheets. Extra paper is available if you need it.
- 3. Show all the steps of your work clearly.

Question	Points	Your Score
Q1	10	
Q2	10	
Q3	10	
Q4	10	
Q5	10	
TOTAL	50	

Q1]...[10 points] State the Principle of Induction.

Give a proof by induction that

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Q2]... [10 points] Give the definition of $a \equiv b \pmod{m}$.

Suppose that $a \equiv b \pmod{m}$, and that $a' \equiv b' \pmod{m}$. Prove **one** of the following conclusions. $a + a' \equiv b + b' \pmod{m}$, and $aa' \equiv bb' \pmod{m}$.

Find the remainder when 123^{456} is divided by 7. That is, compute $123^{456} \pmod{7}$.

Q3]...[10 points] State the Schröder-Bernstein Theorem.

Use the Schröder-Bernstein Theorem to prove one of the following (your choice).

- $\mathcal{P}(\mathbb{Z}^+)$ and (0,1) have the same cardinality.
- (0,1) and $(0,1)^2$ have the same cardinality.

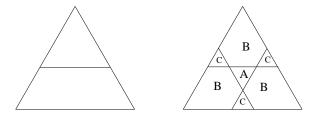
Q4]... [10 points] Give the definition of the greatest common divisor, gcd(a, b), of two integers a and b.

Compute gcd(180, 96) and show how to express your answer as an integer linear combination of 180 and 96.

Prove that if a|bc and gcd(a, b) = 1, then a|c.

Prove that if p is a prime number, and p|ab for integers a and b, then p|a or p|b.

Q5]...[10 points] Consider a pair of equilateral triangles such that the area of the larger is 3 times the area of the smaller. Take three copies of the smaller triangle inside the larger. A copy of the smaller triangle is based at each of the three vertices of the larger triangle. These overlap to form regions with area A, B and C as shown.



Show how to turn this into a proof by infinite descent (well-ordering) that $\sqrt{3}$ is irrational. Give a detailed algebra proof of the irrationality of $\sqrt{3}$ using infinite descent.