
Math 2433–006 Honors Calculus III
Extra Hwk III

Deriving Newton’s Law of Gravitation from Kepler’s Laws

Setup: We’re given a planet acted upon by gravity (of a sun). All we
assume about the gravitational force is that it depends on the position of
the planet. So, taking the sun as the origin of our coordinate system, we
can write F(r) for the force of gravity of the sun acting on the planet, where
r denotes the position vector of the planet.

We want to end up showing that:

• F(r) = f(r)r̂. That is F is a central force (and so acts parallel to r̂).

• f(r) = −K
r2 where K is some positive constant, and where r is the

magnitude of r. Thus, the minus sign indicates an attracting force,
and the 1

r2 gives the inverse square law which is key to Newton’s Law
of Gravitation.

We’ll only need to use Newton’s Law of Motion (force equals mass times
acceleration) together with the first two of Kepler’s Laws (which were for-
mulated as the result of lots of observational data):

I. . . Planets move in elliptical orbits (which are by definition planar!)
about the sun, with the sun at a focus.

II. . . Planets sweep out equal areas in equal times.

We begin by reminding ourselves of the setup. We’ll use cylindrical
coordinates (r, θ, z) with the sun at the origin, and the planet moving in an
ellipse (with one focus at the origin) in the (r, θ)-plane. So the first thing
to do is to write down the mathematical versions of Kepler’s Laws I and II.
Here they are:

MATH-I. . . r = ed
1+e cos θ (where, as in section 11.7, e denotes the ec-

centricity of ellipse, and d denotes the distance from the sun to the
directrix of the ellipse)

MATH-II. . . d
dt

∫ r2 dθ
2 = C (a constant), or in other words

r2θ̇ = 2C

Note that we’re using the (physics) “dot” shorthand to denote differen-
tiation with respect to time t. So ṙ = dr

dt , r̈ = d2r
dt2

, θ̇ = dθ
dt and θ̈ = d2θ

dt2
.



Before we begin, it’s good (for our souls) to recall the unit vectors

r̂ = cos θi + sin θj

and
θ̂ = − sin θi + cos θj

Now we’re ready for the problem.

1. Prove that
dr̂
dt

= θ̇θ̂

and that
dθ̂

dt
= −θ̇r̂

2. Prove that the velocity vector becomes

ṙ =
d(rr̂)

dt
= ṙr̂ + rθ̇θ̂

when expressed in terms of r̂ and θ̂.

3. Prove that the acceleration vector becomes

r̈ = (r̈ − r(θ̇)2)r̂ + (2ṙθ̇ + rθ̈)θ̂

when expressed in terms of r̂ and θ̂.

4. Use r = rr̂, the expression in 2 above, and Kepler’s second law
(MATH-II) to obtain

r× ṙ = 2Ck

5. Differentiate 4 above and deduce that r̈ is parallel to r. Thus, by
Newton’s law of motion, F(r) which is mass times r̈ is also parallel to
r. Thus, F is a central force.

6. By 5 above we can write F(r) = f(r)r̂. We know from 3 and Newton’s
law of motion, that we can also write

F(r) = mr̈ = m(r̈ − r(θ̇)2)r̂ + m(2ṙθ̇ + rθ̈)θ̂

Comparing these two expressions for F we see that the θ̂ expression
vanishes, and that

F = mr̈ = m(r̈ − r(θ̇)2)r̂



7. Finally, use Kepler’s first law (MATH-I) to write down r, and hence
to compute ṙ and r̈. It’ll help to use MATH-II to substitute in for
θ̇ after each successive differentiation. You should (if I have not made
any calculation errors!) end up with something like

f(r̂) =
−4C2

ed

r2

which is indeed of the form −K
r2 where K is some positive constant.

Thus, we have deduced an attracting inverse square law central force
from Kepler I and II. Go and enjoy a Fig Newton. . .


