Fa'05: MATH 2513–001	Discrete Mathematics	Noel Brady
Friday 10/21/2005	Midterm II	10:30am–11:20am
Name:	Student ID:	

Instructions.

- 1. Attempt all questions.
- 2. Do not write on back of exam sheets. Extra paper is available if you need it.
- 3. Show all the steps of your work clearly.

Question	Points	Your Score
Q1	10	
Q2	10	
Q3	10	
Q4	10	
Q5	10	
TOTAL	50	

Q1]...[10 points] Prove that the following are true for sets A and B.

 $(A \cup B) \cap \overline{(A \cap B)} \; = \; (A \cap \overline{B}) \cup (B \cap \overline{A})$

 $A \cup (B \setminus A) = A \cup B$

Q2]... [10 points] Suppose that $f: X \to Y$ is a function, and that $A \subset X$ and $B \subset X$. Prove that $f(A \cap B) \subset f(A) \cap f(B)$.

Give an example to show that $f(A \cap B)$ need not be equal to $f(A) \cap f(B)$.

Prove that $f(A \cap B) = f(A) \cap f(B)$ under the additional assumption that f is an injective map.

Q3]...[10 points] For each of the following pairs of sets, say if they have the same cardinality or not. Give arguments (proofs) to justify your answers in each case.

 \mathbb{Z}^+ and $\mathbb{Z}^+ \times \mathbb{Z}^+$.

 \mathbb{Z}^+ and $(0,1) = \{ x \in \mathbb{R} | 0 < x < 1 \}.$

Q4]...[10 points] How many symmetries does the rectangle below have? Describe them, and write down a composition table for them. Also, identify each symmetry with an element of the set of permutations $Perm(\{1, 2, 3, 4\})$.

Q5]...[10 points] True/False. Give *reasons* for your answers. In these questions, capital letters A, B, C, X, Y denotes sets, and small letters are used to denote either functions (f, g) or elements of sets, y.

- 1. If |A| = 3 and |B| = 4, then $|A \cup B|$ must be equal to 7.
- 2. If $A \cup C = B \cup C$, then A must equal B.
- 3. If $A \oplus B = B$, then A must be \emptyset .
- 4. If $f \circ g$ is injective, then f must be injective.
- 5. If $f \circ g$ is surjective, then f must be surjective.
- 6. If $f: X \to Y$ is injective and $y \in Y$, then $|f^{-1}(\{y\})|$ must be 1.
- 7. The product of permutations (1234)(234) is equal to (1243).
- 8. The union of two disjoint countably infinite sets, is again countably infinite.
- 9. The composition of reflections in two perpendicular lines in the plane is equal to a 90° rotation about their intersection point.
- 10. If |A| = 3, |B| = |C| = 5, $|A \cap B| = 2$, $|B \cap C| = 3$, and $|A \cap C| = |A \cap B \cap C| = 1$, then $|A \cup B \cup C| = 8$.