
MATH 2443–008 Calculus IV Spring 2014
Questions about Existence of Vector and Scalar Potentials

Recall we had the following picture of the grad, curl, and div differential operators.


Functions
f(x, y, z)
on a
domain
E in R3.


grad−−→


Vector fields
F = 〈P,Q,R〉
on the domain
E in R3.

 curl−−→


Vector fields
F = 〈P,Q,R〉
on the domain
E in R3.

 div−→


Functions
f(x, y, z)
on the
domain
E in R3.


1. Tests to see if a vector field has a scalar or vector potential.

(a) Suppose the vector field F is equal to∇f for some function f (we say that F is conservative,
and that it has a scalar potential). Then ∇× F = ∇×∇f = 0.

In particular, if F is a vector field for which ∇× F 6= 0, then you can conclude that F is
NOT the gradient of some function f .

(b) Suppose the vector field F is equal to ∇×G for some vector field G (we say that F has
a vector potential). Then ∇ · F = ∇ · ∇ ×G = 0.

In particular, if F is a vector field for which ∇ · F 6= 0, then you can conclude that F is
NOT the curl of some vector field G.

2. Suppose the vector field F satisfies ∇× F = 0. Is it the case that F is the gradient
of some function f?

(a) The answer can be “No.” Consider the following example.

B =
〈−y, x, 0〉
x2 + y2

• Note that the domain of B is all of R3 minus the z–axis. This domain has a one
dimensional hole; that is, a hole which prevents the one dimensional circle

C : r(t) = 〈cos(t), sin(t), 0〉 0 ≤ t ≤ 2π

from being the boundary of an oriented surface contained in the domain.

• It is easy to verify that ∇×B = 0.

• It is also easy to verify that the line integral
∮
C

B · dr = 2π.

• Because the path integral about a closed path is non-zero, we conclude that B is not
a gradient.

• Key idea: It is a global problem, not a local problem. We saw in class notes (2–dim
version) that B is locally the gradient of a function; for example, the polar angle
function

f(x, y, z) = tan−1(y/x)

is one such function.
The key problem is that there is no globally defined function f whose gradient is B. In
particular, when one tries to extend the definition of the polar angle function above
around the circle unit C in the xy–plane, it becomes multivalued (we end up being
forced to conclude that values of f at some point is both α and 2π + α). Note that
the circle C is one of the circles which is not the boundary of an oriented surface in
R3 minus the z–axis.



(b) If the domain has no one dimensional holes, then every simple, closed loop C is the
boundary of an oriented surface S, and then Stokes’ Theorem gives∮

C

F · dr =

∫∫
S

(∇× F) · dS =

∫∫
S

0 · dS = 0

Thus Path integrals are independent of the chosen path, and we saw in class how to use
these path integrals to build a globally defined function f with ∇f = F. The negative of
such an f is called a (scalar) potential for F.

3. Suppose the vector field F satisfies ∇ · F = 0. Is it the case that F is the curl of some vector
field G?

(a) The answer can be “No.” Consider the following example.

E =
〈x, y, z〉

(x2 + y2 + z2)3/2

• Note that the domain of E is all of R3 minus the origin (0, 0, 0). This domain has
a two dimensional hole; that is, a hole which prevents the two dimensional sphere S
defined by x2 + y2 + z2 = 1 from bounding a solid ball in the domain.

• It is easy to verify that ∇ · E = 0.

• It is also easy to verify that
∫∫

S
E · dS = 4π.

• Because the surface integral of E about the closed sphere S is non-zero, we conclude
(by the result from the Stokes’ Theorem handout) that E is not the curl of any vector
field.

• Key idea: It is a global problem, not a local problem. Because ∇ ·E = 0, it is possible
to “integrate” and find locally defined vector fields G whose curl equals E (do this as
an exercise; we did some examples of finding such vector fields in class).
The problem is that there is no globally defined vector field G on R3 minus (0, 0, 0)
whose curl is E. In particular, there is no vector field defined on all of the unit sphere
S : x2+y2+z2 = 1 whose curl is equal to E on S. (It is a good exercise to try extending
different candidates for G over all of S and to think about what goes wrong.) Note
that the sphere S does not bound a solid ball in R3 minus (0, 0, 0).

(b) If the domain has no two dimensional holes, so that every sphere bounds a solid ball, and
if ∇·F = 0, then one can argue that F is the curl of another, globally defined vector field.
The argument involves some integration.

A vector field G such that ∇×G = F is called a vector potential for F.

4. Remark 1. It can be shown that these are essentially the only examples that occur. Of course
a space may have several one or two dimensional holes, but locally (near the holes) the examples
will all look like B or E.

5. Remark 2. The vector fields B and E are not esoteric mathematical examples. They occur
in nature, and you will meet them in your physics and engineering courses.

• For example, the field B is (up to an appropriate positive scalar multiple) the static
magnetic field due to a constant electric current flowing up an infinite wire along the
z-axis.



• The field E is the standard “inverse square law, central force” field. It could be (up to an
appropriate negative scalar multiple) the gravitational field due to a mass m at (0, 0, 0).
Alternatively, it could be (up to an appropriate positive/negative scalar multiple) the
electrostatic field due to a positive/negative charge q at (0, 0, 0).

6. Remark 3. Potentials.

• You should check that ∇ ·B = 0.

• Verify that A = 〈0, 0, −1
2

ln(x2 + y2)〉 is a vector potential for B; that is, ∇×A = B.

• (One can verify that the domain of B has no two dimensional holes! It is possible to fill
spheres in this domain in with solid balls in the domain.)

• Now check that ∇× E = 0.

• Verify that f(x, y, z) = 1√
x2+y2+z2

is a scalar potential for E; that is, −∇f = E.

• (One can verify that the domain of E has no one dimensional holes; every simple, closed
loop in the domain is the boundary of some oriented surface in the domain.)

• Working with vector potentials for Magnetic fields B and scalar potentials for Electric
fields E will be useful in your EM–class.


