PRINT NAME: SOLUTIONS
Calculus IV [2443-002] Midterm II

Q1]...[10 points] Consider the double integral

1 r2-2y o
/0/_ f@y)dvdy

Sketch the region of integration.

Soln. The limits x = 2 — 2y and z = —/1 — y tell us that the region is bounded on the right by the line
x + 2y = 2 and on the left by the parabola (left half) y = 1 — 2. The limits y = 0 and y = 1 tell us the
upper and lower bounds for this region. We see that the parabola and line already intersect at y = 1, so
the region is drawn as shown.

yle x+ 2y =2

[

Reverse the order of integration.

Soln. Note that reversing the order of integration means building up the region using vertical strips.
There are two different tops on this region; the parabola top on the left side of the y-axis, and the straight
line top on the right side. Thus, we have to divide the region into two pieces along the y-axis. So our
answer will be a sum of two iterated integrals as shown.
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Q2]...[10 points| Consider the following polar coordinates double integral
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Sketch the region of integration.

Soln. Note that the lines § = 7/4 and § = —7 /4 correspond to the cartesian lines y = = and y = —x

respectively. Also the curve r = sec# is just r = (:0150 which rewrites as rcosf = 1 or z = 1. [Gotta hate

those trig functions!] Thus we get the following region.




Rewrite the integral as an iterated Cartesian coordinates integral (with appropriate limits). You do NOT
have to compute this integral.

Soln. Remember that dA = rdrdf and that the remaining r? can be written as r? = 22 +y?. Thus we get
the following iterated integral.
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Q3]...[20 points] Use double integrals in polar coordinates to compute the surface area of the portion of
the sphere 22 + 32 + 22 = a? which is above the zy-plane and which lies inside the cone z? = 22 +3%. Your
answer will involve a.

Soln. We saw in class that surface area of a portion (over the region R) of the graph of z = f(z,y) is

given by
[] i+ +1da
R

In this case we have (by implicit differentiation of the sphere equation) f, = —x/z and (likewise) f, = —y/=z.
We did a sphere example in class! Check out the implicit differentiation details there! Thus,
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which becomes

a2

a2 — 2
in polar coordinates.

Now the cone equation is 22 = 72 and this intersects the sphere when 72 +r? = a? or r = a//2. Thus,
the region that we are integrating over in the plane is given by 0 < 0 < 27 and 0 < r < a/v/2.

Filling all this into the surface area integral (and remembering that dA = rdr df) gives
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We use the substitution u = a® — r? (so that rdr = —du/2) to evaluate the r integral. Here’s what we end
up with.

07 [~ava® — 75V = (27)(=d®/V2+a®) = 2ma’(1 - 1/V/2)



Q4]...[20 points] Use the method of Lagrange multipliers to find the maximum and minimum values of
the function f(z,y,2) = 2y + 2? on the sphere 22 + y? + 22 = 4.

Soln. Vf = (y,z,2z) and Vg = (2x,2y,2z) so the Lagrange multiplier equations are

y = 2\z
r = 2\y
2z = 2)\z

4 = £E2—|—y2+22

So that’s it for the calculus. Now we just have to keep our head with all this algebra. First of all, note
that the first two equations tell us that x = 0 precisely when y = 0 (since x and y are multiples of each
other). So let’s break this analysis into two cases.

Case I: [ = 0 and y = 0] In this case the fourth equation becomes 2% = 4 and so we get z = £2. Thus,
we get two points: (0,0,2) and (0,0, —2).

Case II: [z # 0 and y # 0] In this case the first two equations give z/y = 2\ = y/x. But this means that
2\ must be equal to its own reciprocal (since x/y and y/x are reciprocals) and so must be £1. Thus the
third equation becomes 2z = 42z which implies that z = 0. Now equation 4 becomes 222 = 4 or & = +/2.

We get four points: (—v/2, —v/2,0), (—v/2,v/2,0), (v/2,—v/2,0), and (v/2,v/2,0).

Finally, we evaluate f on these 6 points and see that the maximum f-value is 4 (occurs at (0,0, 2) and
(0,0, —2)), and that the minimum f-value is -2 (occurs at (—+v/2,v/2,0) and (v/2, —v/2,0)).

Bonus Question. Let u and v be differentiable functions of one variable with derivatives denoted by /'
and v’ respectively. Let R be the triangular region with vertices at the points (a,a), (b,0) and (b,a). By

evaluating the double integral
// u'(z) v (y) dA
R

in two different ways (as iterated integrals), give a new derivation of the integration by parts formula

b b
/udv:uv|2—/vdu.
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Soln.

Here is a diagram of the triangular region with
its sides labelled.




On the one hand, we can integrate with respect to y first to get

[ w@man = ([ w@w)iy) a
AR
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On the other hand, we can integrate with respect to x first to get

//R u'(x)v'(y)dA = /ab (/yb o' (z)v' (y) dx) dy

Finally, setting these two expressions equal to each other gives

[ o @) de — u(blo(@) + wla)ola) = wO)b) — ub)eta) ~ [ uly) o) dy

which simplifies down to (removing explicit reference to the dummy variables of integration x and y)

b b
/ vdu = wvl? — / udv
a a

and we’re finished.



