
MATH 2423–Section 001 Calculus II Extra Homework I
Due on Thursday, February 8, 2001

In this homework we’ll see how to compute some definite integrals without using the Fundamen-
tal Theorem of Calculus. You’ll learn tricks and see that it may not always be best to subdivide an
interval into equal width subintervals. But most of all, you should come away with an appreciation
of the power and usefulness of the Fundamental Theorem of Calculus.

Background on Geometric Progressions. You should remember geometric progressions from
your compound interest days in high school. A geometric progression is a sequence of numbers of
the form

a, ar, ar2, . . . , arn

where a, r 6= 0 are numbers. The number r is usually called the common ratio.
For example, suppose you invest a principal P for n years at an annual interest rate of r percent.

If the interest is compounded annually, then you have P + r
100P = P (1 + r

100) at the end of year 1,
P (1 + r

100)+ r
100P (1+ r

100) = P (1 + r
100)2 at the end of year 2, and so on until you have P (1 + r

100)n

at the end of year n. In this case we have a geometric progression with initial amount P and
common ratio of (1 + r

100).
As a second example, the successive digits in the decimal number 0.33 . . . 3 stand for

3
10
,

3
100

,
3

1000
, . . .

3
10n

which form a geometric progression with common ratio equal to 1
10 .

There are instances where one wants to compute the sum of a geometric progression. In the
first example above, if we were to keep investing P at the start of every year, then the balance in
the account at the start of the n+ 1-st year would be the sum

P + P (1 +
r

100
) + · · · + P (1 +

r

100
)n

In the second example, the value of the decimal 0.33 . . . 3 is precisely the sum

3
10

+
3

100
+ · · · +

3
10n

Is there a simple expression for the following sum?

S = a + ar + · · · + arn

Yes there is, and it’s your first exercise to derive it.

Q1]... Prove that the sum of the geometric progression above is given by

S =
a(rn+1 − 1)

(r − 1)

[Hint: Write down the long sum rS explicitly, and put the sum S underneath it. Now subtract and
tidy up!]

Q2]... What number does the following sum give?

1 + 1/2 + 1/4 + · · ·+ 1/210



Computing
∫ b
a x

α dx for rational α 6= −1.
We shall assume throughout that 0 < a < b for simplicity. We warm up to the general result

by proving this for α > 0 an integer.
Use a geometric progression to choose a partition of [a, b] into n subintervals. That is let

q = n
√
b/a and consider the following partition

a, aq, aq2, . . . aqn = b

Q3]... This has several steps.

• Using left hand endpoints as evaluation points, verify that the Riemann sum is

aα+1(q − 1){1 + qα+1 + q2(α+1) + · · ·+ q(n−1)(α+1)}

• Show that this sum is just given by

aα+1(q − 1)
qn(α+1) − 1
qα+1 − 1

• Now, remembering that qn = b/a, rewrite the expression above as

(bα+1 − aα+1)
q − 1

qα+1 − 1

• Then note that the fraction part above is just the reciprocal of 1 + q + · · ·+ qα (why?).

• What happens to q = (b/a)1/n as n → ∞? Complete the derivation of the limit of the
Riemann sum as n → ∞. Compare your answer with the result that anti-differentiation
would give (Fund Theorem).

Now we’re ready for the case of rational α 6= −1.

Q4]... Again there are several steps.

• Verify that everything proceeds exactly as above, and that we’re left with the same problem
of evaluating the limit of

q − 1
qα+1 − 1

as n→∞ (or, equivalently, as q → 1).

• Suppose that α > 0. Let α = r/s for positive integers r and s. Write q1/s = t. Note that
t→ 1 as q → 1, so we can reduce to (why?) computing the limit of

ts − 1
tr+s − 1

as t→ 1.

• Divide above and below by (t − 1) and use sums of geometric progressions to recognize this
fraction as

ts−1 + · · ·+ t+ 1
tr+s−1 + · · ·+ t+ 1

which tends to s/(r + s) = 1/(α+ 1) as t→ 1.



• Finally, we consider the case where α < 0 (α 6= −1). In this case, set q−1/s = t and proceed
as above (show details).

Computing
∫ b
a sinx dx and

∫ b
a cosx dx.

In this example we can use equal width subintervals, but have to use a slick telescoping sum
trick together with some trig identities and a famous trig limit.

Q5]... Here are the steps for the sinx integral.

• Let h = (b− a)/n. Using right-hand endpoints, show that the Riemann sum is

h{sin(a+ h) + sin(a+ 2h) + · · ·+ sin(a+ nh)}

• So long as h is not a multiple of 2π we can multiply and divide by 2 sin(h/2), and use the
trig formula

2 sinA sinB = cos(A−B)− cos(A+B)

to get a telescoping sum of cosines. They cancel (all but two to give)

h

2 sin(h/2)
{cos(a+ h/2)− cos(b+ h/2)}

Fill in the details!

• Use the sin θ
θ limit to determine the limit of these Riemann sums as n→∞ (h→ 0). Compare

your answer with the result guaranteed by the Fund Theorem.

Q6]... Compute the cos definite integral using a limit of Riemann sums analogous to the one
outlined above. Compare your answer to the one obtained by using the Fund Theorem.


