Senior Seminar

Homework Set 2

Please complete by class time on Thursday, Feb 11.

- 1. Consider the multiplicative group $G_1 = \{e^{n\pi i/4} \mid n \in \mathbb{Z}\}.$
 - (a) Is it finite or infinite?
 - (b) Draw it on the unit circle $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}.$
 - (c) Plot some of the elements of the multiplicative group $G_2 = \{(1+i)^n \mid n \in \mathbb{Z}\}$ in the complex plane (minus the origin) At least, plot the values of n between -7 and 9. Hint: it's is easier if you first write (1+i) in polar form.
 - (d) What is the image of G_2 under the homomorphism

$$h: \mathbb{C} - \{0\} \to S^1: z \mapsto \frac{z}{|z|}?$$

- 2. A group G is said to be *abelian* if the operation is *commutative*. That is gh = hg for all $g, h \in G$. Show that the group $SL(2,\mathbb{Z})$ is not abelian.
- 3. An $n \times n$ matrix A is said to be *orthogonal* if $A^T A = AA^T = I_n$, where I_n denotes the identity matrix (1's on the diagonal and 0's elsewhere) and A^T denotes the *transpose* of A (which is defined by requiring that its *ij*-entry is the *ji*-entry of A).
 - (a) Check that the set O(n) of all $n \times n$ orthogonal matrices with real number entries is a group under matrix multiplication.
 - (b) Prove that the elements of O(2) are either of the form

$$\begin{pmatrix} a & b \\ b & -a \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

where $a^2 + b^2 = 1$.

- (c) Writing $a = \cos \theta$ and $b = \sin \theta$ above, give a geometric interpretation of the two types of elements of O(2).
- (d) Verify that $SO(2) = \{A \in O(2) | |A| = 1\}$ is a subgroup of O(2). It is called the *special* orthogonal group.