## Examples and some basic properties of groups

1. Definition (Group). A group consists of a set $G$ and a binary operation $\circ: G \times G \rightarrow G$ : $(g, h) \mapsto g \circ h$ which satisfies the following properties.
(a) Associativity. For all $g, h, k \in G$ we have

$$
(g \circ h) \circ k=g \circ(h \circ k)
$$

(b) Identity. There is an element $e \in G$ such that

$$
e \circ g=g \circ e=g
$$

for all $g \in G$.
(c) Inverses. For every $g \in G$ there exists $g^{-1} \in G$ such that

$$
g \circ g^{-1}=g^{-1} \circ g=e
$$

Note that the closure property is included in the definition of a binary operation as being a function from $G \times G$ with values in $G$.
2. Examples of groups. Here are some examples and some non-examples.

- The set $S_{n}=\operatorname{Perm}(\{1, \ldots, n\})$ is a group under composition of functions o.
- The set $\mathbb{Z}$ is a group under + . So also are $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ under + .
- The set $\mathbb{N}$ is not a group under + (no inverses).
- The set $\mathbb{R}-\{0\}$ is a group under $\times$. So also are $\mathbb{R}_{>0}, \mathbb{Q}-\{0\}, \mathbb{Q}_{>0}$, and $\mathbb{C}-\{0\}$ groups under $\times$.
- The set $\mathbb{Z}_{n}$ is a group under $+_{n}$.
- The set $\mathbb{Z}_{p}-\{0\}$ is a group under $\times_{p}$ where $p$ is a prime.
- The set $D_{n}$ of symmetries of a regular $n$-gon in the euclidean plane is a group under composition of functions.
- The set of symmetries of a regular polyhedron (e.g., a cube, an octahedron, a tetrahedron, an octahedron, an icosahedron, a dodecahedron) in euclidean 3-dimensional space is a group.
- The set of symmetries of a wallpaper pattern in the euclidean plane is a group.

3. Basic properties. The following results are true for all groups.

- The identity element is unique.
- Inverses are unique.

4. Isomorphic groups. Two groups $\left(G_{1}, \circ_{1}\right)$ and $\left(G_{2}, \circ_{2}\right)$ are said to be isomorphic if there is a bijection $\varphi: G_{1} \rightarrow G_{2}$ which respects multiplication. That is

$$
\varphi\left(g \circ_{1} h\right)=\varphi(g) \circ_{2} \varphi(h)
$$

for all $g, h \in G_{1}$.
Intuitively, isomorphic groups are the same. They have the same number of elements and the elements (once paired up) multiply in the same way, You could think of it as translating a group from English into French. There is the same underlying group structure but different expressions for the elements and the operation.
Examples of isomorphic groups include.

- $D_{3}$ and $S_{3}$.
- $S_{4}$ and the group of symmetries of a regular tetrahedron in 3-space.
- $S_{2}$ and $\mathbb{Z}_{2}$.
- $A_{3}$ and $\mathbb{Z}_{3}$.
- $(\mathbb{R},+)$ and $\left(\mathbb{R}_{>0}, \times\right)$.
- $\left(\mathbb{Z}_{p}-\{0\}, \times_{p}\right)$ and $\left(\mathbb{Z}_{p-1},{ }_{p-1}\right)$ where $p \geq 3$ is a prime. You can learn proofs of this fact in an abstract algebra course. Meanwhile, find explicit isomorphisms in the cases $p=3,5,7$, and 11 .
- $(\{ \pm 1, \pm i\}, \times)$ and $\left(\mathbb{Z}_{4},+_{4}\right)$.

5. Subgroups. A subset $H \subseteq G$ of a group $G$ is said to be a subgroup if it is a group under the operation on $G$. That is $H$ contains the identity of $G$, and is closed under taking inverses and products.
Examples of subgroups include the following.

- $m \mathbb{Z}$ is a subgroup of $\mathbb{Z}$.
- $A_{n}$ the alternating group is a subgroup of $S_{n}$ the symmetric group.
- $\{\mathbb{I},(12)\}$ is a subgroup of $S_{3}$.
- $(\mathbb{Z},+)$ is a subgroup of $(\mathbb{Q},+)$ which is a subgroup of $(\mathbb{R},+)$ etc.
- If $g \in G$ then the set

$$
\langle g\rangle=\left\{g^{n} \mid n \in \mathbb{Z}\right\}
$$

is a subgroup of $G$. It is called the cyclic subgroup of $G$ generated by $g$.
An element $g \in G$ has finite order if $g^{m}=e$ for some $m \in \mathbb{N}$. The smallest such $m$ is called the order of $g$ and is denoted by $\operatorname{ord}(g)$. If $\operatorname{ord}(g)=m$, then $\langle g\rangle$ has size $m$. Its elements are $g^{1}, g^{2}, \ldots, g^{m-1}, g^{m}=e$.
For example

$$
\langle(123)(45)\rangle=\{(123)(45),(132),(45),(123),(132)(45), \mathbb{I}\}
$$

is a subgroup of size 6 in $S_{5}$.

- The symmetries of a cube which send a given face to itself forms a subgroup of the group of symmetries of a cube. Similarly for the symmetries which send an edge to itself, or for the symmetries which fix a vertex.

6. Cayley's Theorem. Every group is isomorphic to a group of permutations of a set. In particular, the group $G$ is isomorphic to a subgroup of $\operatorname{Perm}(G)$.
Proof. Let $g \in G$. Consider the function $L_{g}: G \rightarrow G: x \mapsto L_{g}(x)=g x$ defined by left multiplication by $g$. Here are two cool properties of left multiplication.

- If $e \in G$ is the identity element, then $L_{e}=\mathbb{I}_{G}$.

Proof. By definition $L_{e}(x)=e x=x=\mathbb{I}_{G}(x)$ for all $x \in G$. Thus $L_{e}=\mathbb{I}_{G}$.

- If $g_{1}, g_{2} \in G$, then $L_{g_{1}} \circ L_{g_{2}}=L_{g_{1} g_{2}}$.

Proof. Indeed for any $x \in G$ we have

$$
L_{g_{1}} \circ L_{g_{2}}(x)=L_{g_{1}}\left(L_{g_{2}}(x)\right)=L_{g_{1}}\left(g_{2} x\right)=g_{1}\left(g_{2} x\right)=\left(g_{1} g_{2}\right) x=L_{g_{1} g_{2}}(x)
$$

Thus $L_{g_{1}} \circ L_{g_{2}}=L_{g_{1} g_{2}}$.

From these properties we conclude that

$$
L_{g} \circ L_{g^{-1}}=L_{g g^{-1}}=L_{e}=\mathbb{I}_{G}
$$

and

$$
L_{g}^{-1} \circ L_{g}=L_{g^{-1} g}=L_{e}=\mathbb{I}_{G}
$$

The top equality implies that $L_{g}$ is surjective, and the bottom equality implies that $L_{g}$ is injective. Therefore $L_{g}$ is a bijection (permutation of $G$ ) with inverse

$$
L_{g}^{-1}=L_{g^{-1}}
$$

Now, the facts that $\mathbb{I}_{G}=L_{e}$, that $L_{g} \circ L_{h}=L_{g h}$ and that $L_{g}^{-1}=L_{g^{-1}}$ imply that the subset

$$
\left\{L_{g} \mid g \in G\right\} \subseteq \operatorname{Perm}(G)
$$

is a subgroup.
Finally we verify that the assignment

$$
G \rightarrow\left\{L_{g} \mid g \in G\right\} \subseteq \operatorname{Perm}(G)
$$

sending $g$ to $L_{g}$ is an isomorphism of groups. It is clearly surjective (by definition of the set $\left\{L_{g} \mid g \in G\right\}$ ) and injectivity is readily established. If $L_{g}=L_{h}$, then $L_{g}(e)=L_{h}(e)$, and this implies $g e=h e$ or $g=h$. Done! Finally, the equation $L_{g} \circ L_{h}=L_{g h}$ implies that the assignment respects group multiplications (multiplication $g h$ on $G$ on the one hand and composition of permutations $L_{g} \circ L_{h}$ on the other) and so is an isomorphism.

Examples. Here are some examples of groups considered as subgroups of permutation groups according to the proof of Cayley's theorem.

- $\left(\mathbb{Z}_{3},+_{3}\right)$ is isomorphic to the group $\{\mathbb{I},(012),(021)\}$ of $\operatorname{Perm}\left(\mathbb{Z}_{3}\right)$.
- $\left(\mathbb{Z}_{n},+_{n}\right)$ is isomorphic to the group $\left\{\mathbb{I},(012 \ldots n-1),(012 \ldots n-1)^{2}, \ldots,(12 \ldots n-1)^{n-1}\right\}$ of $\operatorname{Perm}\left(\mathbb{Z}_{n}\right)$.
- Given $m \in \mathbb{Z}$ let $P_{m}$ denote the bijection of $\mathbb{Z}$ given by adding $m$ (plus $m$ )

$$
P_{m}: \mathbb{Z} \rightarrow \mathbb{Z}: n \mapsto P_{m}(n)=m+n
$$

Cayley's theorem implies that the assignment

$$
(\mathbb{Z},+) \rightarrow(\operatorname{Perm}(\mathbb{Z}), \circ)
$$

sending $m$ to $P_{m}$ is an isomorphism of groups.
More efficient examples. We can often realize particular groups as being isomorphic to subgroups of permutation groups in more efficient ways than the method of Cayley's theorem.

- The dihedral group $D_{3}$ is isomorphic to a subgroup of $S_{3}$ where the 3 element set is the set of vertices of the triangle.
- Write out explicit isomorphisms for $D_{4}, D_{5}, D_{6}$ similar to the one above.
- The group of symmetries of a regular tetrahedron is isomorphic to $S_{4}$.
- The group of symmetries of a regular cube is isomorphic to a subgroup of $S_{8}$ (using vertices), and to a subgroup of $S_{12}$ (using edges), and to a subgroup of $S_{6}$ (using faces).

7. Lagrange's Theorem. If $G$ is a finite group and $H$ is a subgroup of $G$, then $|H|||G|$.

Proof. We have already seen that left multiplication $L_{g}$ by $g \in G$ is a bijective function. In particular

$$
\left.L_{g}\right|_{H}: H \rightarrow L_{g}(H)
$$

is a bijection. This shows that each set $L_{g}(H)$ has the same number of elements as $H$.
Some of these image sets are the same. For example, if $h \in H$ then $L_{h}(H)=H$. Likewise if $h \in H$ and $g \in G-H$ then $L_{g}(H)=L_{g}\left(L_{h}(H)\right)=L_{g h}(H)$.
It is a wonderful fact that two such image sets are either the same or are disjoint. In other words, if $L_{g_{1}}(H) \cap L_{g_{2}}(H) \neq \emptyset$, then $L_{g_{1}}(H)=L_{g_{2}}(H)$. Indeed, if $x \in L_{g_{1}}(H) \cap L_{g_{2}}(H)$ then this means that $x=g_{1} h_{1}$ for some $h_{1} \in H$ and that $x=g_{2} h_{2}$ for some $h_{2} \in H$. But this means that

$$
g_{1} h_{1}=g_{2} h_{2}
$$

Multiplying across on the left by $g_{2}^{-1}$ and on the right by $h_{1}^{-1}$ gives

$$
g_{2}^{-1} g_{1}=h_{2} h_{1}^{-1}
$$

Thus

$$
L_{g_{2}}^{-1} \circ L_{g_{1}}(H)=L_{g_{2}^{-1} g_{1}}(H)=L_{h_{2} h_{1}^{-1}}(H)=H
$$

This means

$$
L_{g_{2}}^{-1}\left(L_{g_{1}}(H)\right)=H
$$

and so

$$
L_{g_{2}}\left(L_{g_{2}}^{-1}\left(L_{g_{1}}(H)\right)\right)=L_{g_{2}}(H)
$$

In other words

$$
L_{g_{1}}(H)=L_{g_{2}}(H)
$$

Thus we have a partition of $G$ into disjoint subsets of the form $L_{g}(H)$ each of which is bijective to $H$ and so has the same cardinality as $H$. Since $G$ is finite there are only finitely many (say that there are $m$ ) of these distinct subsets $L_{g}(H)$. But this means $m|H|=|G|$ and so $|H|$ divides $|G|$.
Examples. There are lots of examples of Lagrange's Theorem.

- If $G$ is a finite group and $g \in G$, then $\operatorname{ord}(g)||G|$.
- $\langle(12)\rangle,(123)\langle(12)\rangle$ and $(132)\langle(12)\rangle$ form a partition of $S_{3}$.
- $\langle(123)\rangle$ and $(12)\langle(123)\rangle$ form a partition of $S_{3}$.
- $A_{n}$ and (12) $A_{n}$ form a partition of $S_{n}$.
- The set of symmetries of the cube which send a given face of the cube into itself forms a subgroup of the group of symmetries of the cube which is isomorphic to $D_{4}$. Thus the number of symmetries of the cube is a multiple of 8 .
- We know that for $p$ prime $\left(\mathbb{Z}_{p}-\{0\}, \times\right)$ is a group under multiplication. Its order is $p-1$. If $a \in \mathbb{Z}_{p}-\{0\}$ then the order of $a$ (that is the power of $a$ which yields the identity $1 \bmod p$ ) divides $p-1$ by Lagrange's theorem. This means

$$
a^{p-1} \equiv 1 \quad \bmod p
$$

This is the statement of Fermat's Little Theorem.

