University of Oklahoma
Mathematics Department
Dynamical Systems Working Seminar
Dynamical Systems Working Seminar
This semester, the
Dynamical Systems Working Seminar
(usually) meets on Wednesdays from 1:30 to 3:00 p.m. in PHSC 809. For more information about the seminar, contact
Fan Yang
or
Alex Grigo
.
Spring 2020 Talks
1/27
Fan Yang
OU
Organizational meeting
2/5
Nikola Petrov
OU
The Poincaré-Siegel theorem - the simplest KAM-type theorem
2/12
Nikola Petrov
OU
The Poincaré-Siegel theorem - the simplest KAM-type theorem - I
2/19
Nikola Petrov
OU
The Poincaré-Siegel theorem - the simplest KAM-type theorem - II
2/26
Miro Kramar
OU
Conley index theory and its applications - I
3/4
Miro Kramar
OU
Conley index theory and its applications - II
3/11
Miro Kramar
OU
Conley index theory and its applications - III
4/15
Pengfei Zhang
OU
Elliptic coordinates and elliptic billiards
4/22
4/29
Fall 2019 Talks
8/19
Fan Yang
OU
Organizational meeting
8/28
Nikola Petrov
OU
Hamiltonian dynamics and symplectic geometry - I
9/4
Nikola Petrov
OU
Hamiltonian dynamics and symplectic geometry - II
9/11
Nikola Petrov
OU
Hamiltonian dynamics and symplectic geometry - III
9/18
Jory Griffin
OU
Dynamics on the hyperbolic plane - I
9/25
Jory Griffin
OU
Dynamics on the hyperbolic plane - II
10/2
Jory Griffin
OU
Dynamics on the hyperbolic plane - III
10/9
Fan Yang
OU
A new cross-section for singular flows - I
10/16
Fan Yang
OU
A new cross-section for singular flows - II
10/23
Fan Yang
OU
A new cross-section for singular flows - III
11/6
Pengfei Zhang
OU
Introduction to planar billiards
11/13
Pengfei Zhang
OU
Mechanisms for chaotic billiards
Spring 2019 Talks
1/23
Organizational meeting
1/30
Alex Grigo
OU
Deterministic approximations of Markov chains - I
2/6
Alex Grigo
OU
Deterministic approximations of Markov chains - II
2/13
Connor Davis
OU
Introduction to martingales and some estimates
2/20
Connor Davis
OU
Martingales continued
2/27
Connor Davis
OU
Martingales continued
3/6
Alex Grigo
OU
Deterministic approximations of Markov chains - III
Fall 2018 Talks
9/5
Alex Grigo
OU
Markov partitions, symbolic coding, entropy
9/12
Fan Yang
OU
Unique equilibrium state for Markov shift - I
9/19
Fan Yang
OU
Unique equilibrium state for Markov shift - II
9/26
Connor Davis
OU
Dynamical systems with hole - I
10/3
No talk
10/10
Connor Davis
OU
Dynamical systems with hole - II
10/17
No talk
10/24
Martin Carlson
OU
Product of expansive Markov maps with hole - I
10/31
No talk
11/7
Martin Carlson
OU
Product of expansive Markov maps with hole - II
Spring 2018 Talks
3/2
Alex Grigo
OU
Averaging in Hamiltonian systems and other systems - I
3/9
Alex Grigo
OU
Averaging in Hamiltonian systems and other systems - II
3/16
Alex Grigo
OU
Averaging in Hamiltonian systems and other systems - III
3/30
Alex Grigo
OU
Averaging in Hamiltonian systems and other systems - IV
4/6
Mahesh Sunkula
OU
Hamiltonian systems and action-angle coordinates
4/13
Mahesh Sunkula
OU
Action-angle variables
Fall 2017 Talks
8/28, 4 pm
Organizational meeting
9/5
Fan Yang
OU
Decay of correlations for subshift of finite type - I
9/12
Fan Yang
OU
Decay of correlations for subshift of finite type - II
9/19
Fan Yang
OU
Decay of correlations for subshift of finite type - III
9/26
Fan Yang
OU
Decay of correlations for subshift of finite type - IV
10/3
Fan Yang
OU
Decay of correlations for subshift of finite type - V
10/10
Fan Yang
OU
Decay of correlations for subshift of finite type - VI
10/17
Alex Grigo
OU
Symbolic coding of smooth systems and Markov Partitions - I
10/24
Alex Grigo
OU
Symbolic coding of smooth systems and Markov Partitions - II
10/31
Connor Davis
OU
An interesting measure theoretic example
11/7
Pengfei Zhang
OU
Spectral properties of circle maps induced by Blaschke products
11/14
Fan Yang
OU
Introduction to Young's tower - I
11/21
Fan Yang
OU
Introduction to Young's tower - II
11/28
No talk
12/5
Alex Grigo
OU
Young towers - examples and comments
Spring 2017 Talks
1/25
Alex Grigo
OU
Organizational meeting
2/1
Alex Grigo
OU
Invariant manifolds - I
2/8
Alex Grigo
OU
Invariant manifolds - II
2/15
Alex Grigo
OU
Invariant manifolds - III
2/22
Mahesh Sunkula
OU
Horseshoe map and its invariant set
3/1
Mahesh Sunkula
OU
Horseshoe map continued
3/8
No talk
3/22
Jonathan Epstein
OU
Topological entropy for Arnold's cat map
Fall 2016 Talks
8/30
Organizational meeting
9/13
Alex Grigo
OU
Introduction to statistical properties of dynamical systems - I
9/20
Alex Grigo
OU
Introduction to statistical properties of dynamical systems - II
9/27
Alex Grigo
OU
Introduction to statistical properties of dynamical systems - III
10/4
No talk
10/11
Mahesh Sunkula
OU
Expanding maps and their spectrum - I
10/18
Mahesh Sunkula, Ore Adekoya
OU
Expanding maps and their spectrum - II
10/25
Ore Adekoya, Dania Sheaib
OU
Expanding maps and their spectrum - III
11/1
No talk
11/8
Dania Sheaib, Connor Davis
OU
General expanding maps and their spectrum
11/15
Connor Davis
OU
Introduction to spectral calculus - I
11/22
Connor Davis
Introduction to spectral calculus - II
11/29
Alex Grigo
OU
Wrap up of the semester
12/6
No talk
Spring 2016 Talks
1/25
Organizational meeting
2/1
Alex Grigo
OU
Introduction to Levy processes - I
2/8
Alex Grigo
OU
Introduction to Levy processes - II
2/15
Alex Grigo
OU
Introduction to Levy processes - III
2/22
Mathew Gluck
OU
Levy processes and the fractional Laplacian
2/29
No talk
3/7
Alex Grigo
Stochastic differential equations driven by Levy processes
3/21
No talk
3/28
Mahesh Sunkula
OU
Stability conditions and control of nonlinear systems
4/4
Mahesh Sunkula
OU
Control of nonlinear systems
4/11
No talk
4/18
Nikola Petrov
OU
Poisson and renewal processes - I
4/25
Nikola Petrov
OU
Poisson and renewal processes - II
5/2
(3:20 pm)
Sean Bauer
OU
On the existence of KAM tori for presymplectic vector fields (Ph.D. thesis defense)
Fall 2015 Talks
9/1
Alex Grigo
OU
Organizational meeting
9/8
Alex Grigo
OU
Construction and path regularity of Brownian motion
9/15
Mahesh Sunkula
OU
Markov and martingale properties of Brownian motion - I
9/22
Mahesh Sunkula
OU
Markov and martingale properties of Brownian motion - II
9/29
Mahesh Sunkula
OU
Markov and martingale properties of Brownian motion - III
10/6
Alex Grigo
OU
Some martingale inequalities and an outlook on stochastic integration
10/13
Dania Sheaib
OU
Stochastic integration and Ito's formula
10/20
Dania Sheaib
OU
Stochastic integrals with respect to Brownian motion - I
10/27
Dania Sheaib
OU
Stochastic Integration with respect to Brownian Motion - II
11/3
No talk
11/10
Mahesh Sunkula
OU
Introduction to stochastic differential equations - I
11/17
Mahesh Sunkula
OU
Introduction to stochastic differential equations - II
11/24
Alex Grigo
OU
Introduction to Stratonovich calculus
12/1
Dania Sheaib
OU
Euler method for ODEs and stochastic differential equations
12/8
Dania Sheaib
OU
Numerical solutions to stochastic differential equations
Spring 2015 Talks
1/21
Nikola Petrov
OU
Geometric approach to first order PDEs - I
1/28
Nikola Petrov
OU
Geometric approach to first order PDEs - II
2/4
Dania Sheaib
OU
Variational principle and Hamilton-Jacobi equations - I
2/11
Dania Sheaib
OU
Variational principle and Hamilton-Jacobi equations - II
2/18
Dania Sheaib
OU
Variational principle and Hamilton-Jacobi equations - III
2/25
Mahesh Sunkula
OU
Symplectic algebra and symplectic manifolds
3/4
Mahesh Sunkula
OU
Hamiltonian systems
3/11
Mahesh Sunkula
OU
Geometrical interpretation of Hamilton Jacobi equation - I
3/25
Mahesh Sunkula
OU
Geometrical interpretation of Hamilton Jacobi equation - II
4/1
Garrett Alston
OU
Contact geometry and linear PDEs - I
4/8
Garrett Alston
OU
Contact geometry and linear PDEs - II
4/15
No talk
4/22
Alexander Grigo
OU
Introduction to the (mathematical) theory of billiards
4/29
(2-4 pm)
Estapraq Kahlil
OU
Existence and stability of solutions to a model equation for dispersion-managed solitary waves (Ph.D. thesis defense)
Fall 2014 Talks
9/2
Mahesh Sunkula
OU
Poincare-Siegel Theorem - I
9/9
Mahesh Sunkula
OU
Poincare-Siegel Theorem - II
9/16
Mahesh Sunkula
OU
Poincare-Siegel Theorem - III
9/23
Bryan Archer
OU
A taste of normal forms - I
9/30
Bryan Archer
OU
A taste of normal forms - II
10/7
No talk
10/14
Linling Ru
Uniformly hyperbolic attractors - I
10/21
Linling Ru
Uniformly hyperbolic attractors - II
10/28
Linling Ru
Uniformly hyperbolic attractors - III
11/4
No talk
11/11
Alex Grigo
OU
Hyperbolicity and cones
11/18
No talk - Math Day week
11/25
No talk
12/2
No talk
Spring 2014 Talks
1/21
Nikola Petrov
OU
An introduction to Hamiltonian dynamics - I
1/28
Nikola Petrov
OU
An introduction to Hamiltonian dynamics - II
2/4
James Broda
OU
Geometry for dynamical systems - I
2/11
James Broda
OU
Geometry for dynamical systems - II
2/18
James Broda
OU
Geometry for dynamical systems - III
2/25
Bryan Archer
OU
Geometry for dynamical systems - IV
3/4
Bryan Archer
OU
Geometry for dynamical systems - V
3/11
Nikola Petrov
OU
Geometry for dynamical systems - VI
3/25
Nikola Petrov
OU
Geometry for dynamical systems - VII
4/1
James Broda
OU
Birkhoff normal forms - I
4/8
James Broda
OU
Birkhoff normal forms - II
4/15
Alexander Grigo
OU
Variational principles and perturbation theory - I
4/22
Alexander Grigo
OU
Variational principles and perturbation theory - II
4/29
Alexander Grigo
OU
Variational principles and perturbation theory - III
Fall 2013 Talks
8/29
Alexander Grigo
OU
ODEs - a crash course - I
9/5
Alexander Grigo
OU
ODEs - a crash course - II
9/12
Alexander Grigo
OU
ODEs - a crash course - III
9/19
Mahesh Sunkula
OU
Linearization methods - I (for fixed points)
9/26
Mahesh Sunkula
OU
Linearization methods - II (for periodic orbits)
10/3
Mahesh Sunkula
OU
Linearization methods - III (Floquet theory)
10/10
Bryan Archer
OU
A brief word on the Duffing and van der Pol equations - I
10/17
Bryan Archer
OU
A brief word on the Duffing and van der Pol equations - II
10/24
James Broda
OU
The WKB method
10/31
Alexander Grigo
OU
Boundary layer techniques
11/7
Dania Sheaib
OU
Geometric singular perturbation in view of Fenichel theory - I
11/14
OU Math Day -
please volunteer!
11/21
Dania Sheaib
OU
Geometric singular perturbation in view of Fenichel theory - II
12/5
No talk
Spring 2013 Talks
1/25
Alexander Grigo
OU
Statistical properties of dynamical systems - I
2/1
Alexander Grigo
OU
Statistical properties of dynamical systems - II
2/8
Alexander Grigo
OU
Statistical properties of dynamical systems - III
2/15
Sean Bauer
OU
Moving from order to chaos - I
2/22
Sean Bauer
OU
Moving from order to chaos - II
3/1
No talk - AMS Meeting in Oxford
3/8
Bryan Archer
OU
The ABC's of circle maps - I
3/15
No talk
3/29
Bryan Archer
OU
The ABC's of circle maps - II
4/5
Bryan Archer
OU
The ABC's of circle maps - III
4/12
Nikola Petrov
OU
Periodically pulsating resonators and circle maps - I
4/19
Nikola Petrov
OU
Periodically pulsating resonators and circle maps - II
4/26
No talk
5/3
No talk
Fall 2012 Talks
8/24
Nikola Petrov
OU
Lagrangian variational principle and Euler-Lagrange equations
8/31
Nikola Petrov
OU
Hamilton's equations
9/7
Alexander Grigo
OU
Measurable dynamical systems and introduction to Ergodic Theory - I
9/14
Alexander Grigo
OU
Measurable dynamical systems and introduction to Ergodic Theory - II
9/21
Alexander Grigo
OU
Measurable dynamical systems and introduction to Ergodic Theory - III
9/28
Sean Bauer
OU
Hamiltonian systems and the classical KAM theorem - I
10/5
Sean Bauer
OU
Hamiltonian systems and the classical KAM theorem - II
10/19
Sean Bauer
OU
Hamiltonian systems and the classical KAM theorem - III
10/26
No talk
11/2
James Broda
OU
Symplectic geometry and Hamiltonian dynamics - I
11/9
James Broda
OU
Symplectic geometry and Hamiltonian dynamics - II
11/16
James Broda
OU
Symplectic geometry and Hamiltonian dynamics - III
11/30
No talk
12/7
No talk