My list of errata in McQuarrie, Mathematical Methods for Scientists and Engineers (2003)
D. Sober

07 November 2011
(Please inform me of others - I will update this list.)

Chapter 1

Page
41 Eq. (9): add + sign before second lim
58 Example 3: "Choose $M(t)=t^{2} e^{-\alpha t^{2}}$ because ..."

Chapter 2

85 In The Weierstrass M Test: "and ΣM_{n} converges, ..."

97 Example 3: $\sinh ^{-1} x=\boldsymbol{x}+\sum_{n=1}^{\infty} \ldots=\boldsymbol{x}-\frac{1}{2 \cdot 3} x^{3}+\ldots$
1072 lines after (1): " $d v "=+e^{-z} d z$
107 After (2): "Equation 2 is an identity: ..."
1072 lines after (3): "or $0.00107<E_{1}(5)<0.00117$, ..."
108 After (5): "... 0 as $x \rightarrow \infty$;" (not $x \rightarrow 0$)

Chapter 3

153 Not an error, but note that Spiegel et al. (Schaum tables) use a different convention for definition of B_{n}. McQuarrie's convention seems to be more common.

Chapter 4

166 Last words of page are missing: "The boundaries of the domain are numbered in the figure"?
168 Problem 3: There should be no " i " in " $v(x, y)=-i y / . . . "$.
188 Problem 7: "...indicating the appropriate branch cut in the z-plane."
Chapter 5
214 End of Example 1: Spelling should be "Larmor frequency"
Chapter 6
235 Figure 6.14: Equation describes an oblate spheroid (thinner in x-direction), but figure depicts a prolate spheroid (longer in x-direction.)
$\ldots+f_{y}^{2}(a, b)$ in denominator of (4)
Equation between (9) and (10): $\frac{\partial^{2} A}{\partial V \partial T}=\left[\frac{\partial}{\partial V}\left(\frac{\partial A}{\partial T}\right)_{V_{T}}\right]_{T}=\ldots$ (outer subscript is T, not S)
Equation for $d f$ (after Example 4) is missing " $d t$ " from both terms in sum.
Example 2: The numerator of the x-component of \boldsymbol{E} should be $2 x^{2}-y^{2}-z^{2}$.
Fig. 6.33 shows a pair of \pm charges with finite separation. This does not correspond to the expressions for the dipole potential (Eq. (2)) and field, which are valid only for a "point dipole", where the separation of the two charges is negligible. The factor μ is missing from the field (and both formulas are in Gaussian units, not SI units.)
279
289
296
First paragraph of Section 6.8: "Recall that later in Section 2.8, we used ..."
$2^{\text {nd }}$ equation on page: $\ln W=\ln N!-\sum_{j=1}^{M} \ln N_{j}=\ldots!$ (missing "ln" in first sum)
Last line of Example 5: "is a beta function (Section 3.2)."

Chapter 7

302 Equation (2) is not a dipole potential: the denominator should be $\left(x^{2}+\ldots\right)^{3 / 2}$. The gradient of ∇V is calculated correctly from (2), but it is not a dipole field. For a correct dipole potential and field, see my note to page 271. The comments to Fig. 6.33 (p. 271) apply also to Fig. 7.2 - the figure is not consistent with the equations.
330 Problem 7: Equations are inconsistent, and Figure 7.32 does not correspond to the given equations. To make consistent, change last equation to $z(\theta, \varphi)=b \sin \varphi$, and in Figure 7.32(a) let a, b, θ, y be replaced by b, a, φ, z; in caption for (b), "rotating the above circle about the z axis."
$3353^{\text {rd }}$ line after example: "diffusion equation (Equation 16 of Section 1.)"
336 Last paragraph: "for a charge-free region" (not "charged-free")

Chapter 8

376 Table 8.3: $h_{\varphi}=r \sin \theta(\operatorname{not} r \sin \varphi)$
378 Problem 19: "Show that $F(k)=4 \pi \int_{0}^{\infty} f(r) \frac{r \sin k r}{k} d r$." (Not triple integral, not $[-\infty, \infty]$, missing factor 4π.)
381 In Example 3, it is perhaps worth noting that " $d V$ " in a 2-dimensional space is not a volume but an area.
384 Equations at top of page: delete extra \mathbf{e}_{z} on the right of $\partial \mathbf{e}_{r} / \partial z$.
390 Equation (4): η missing from $h_{\varphi}=a \sinh \boldsymbol{\eta} \sin \theta$.

Chapter 9

442 Example 6. For the interval $[-1,1],|x|=-x$ for $x \leq 0$, so the first determinant is $\left|\begin{array}{l}x-x \\ 1-1\end{array}\right|=0$ (not $-2 x)$ for $x \leq 0$, and $W(x)=0$ everywhere for both parts of interval.

Chapter 10

460 (14) and last equation: For consistency with Section 9.7, should write $\langle\boldsymbol{u} \mid \boldsymbol{v}\rangle$, $\langle A \boldsymbol{u} \mid A \boldsymbol{v}\rangle,\langle\boldsymbol{u} \mid \boldsymbol{u}\rangle$.
461 After equation beginning with summation: "rows of A are orthonormal" (not "rows of A ${ }^{\dagger}$...").
469 Line before Example 6: "... mutually orthogonal eigenvectors" (not eigenvalues)
479 Line after Equation (25): first exponential factor in solution is $e^{-3 \tau / 8}$
503 Example 3: The last two equations should be written in terms of x^{\prime} and y^{\prime}, not x and y.

Chapter 11

$517 \quad 2^{\text {nd }}$ line from bottom: "in an interval $x_{0}-h \leq x \leq x_{0}+h$ lying within the region"
520 Equation before Example 4: $F(x, y)=2 x y+2 x+A$ (not " $=A$ ")
535 Eq. (14): $y(x)=\left(c_{1}+c_{2} x+c_{3} x^{2}+\ldots+c_{n} x^{n-1}\right) e^{\alpha x}$ (last constant is c_{n}, not c_{n-1}.)
5472 lines above (16): $\omega_{0}^{2}=\left(4 L / C-R^{2}\right) /(2 L)^{2} \quad($ not " $/ 2 L$ ")
556 In Equation (1): second term of sum should contain $y^{(n-1)}$ ($n-1^{\text {th }}$ derivative), not y^{n-1}.
559 Fig. 11.18 is not consistent with the given boundary condition that $y(0)=1 / \alpha$.

Chapter 12

579 End of Example 1 ("... the two power series do not seem to be expressable in terms of known functions.") The alert reader will note that the first (even) series gives $e^{-\frac{3}{2} x^{2}}$.
583 Equation (7) should not have the initial "4" if it is to agree with previous Eq. (11)
585 Equation (9): both limits should be as " $x \rightarrow x_{0}$ ".

After Equation (8), " \ldots associated with this equation is $(r+1)^{2}=0$ "
Line 1: "... with $r=-1$ into Equation $8, \ldots$ " (not 7)
Before Eq. (26): "... corresponding to $r_{1}=0$ is (Problem 18) ..." (not Problem 19)
Example 6 SOLUTION, first equation: last term is .. $+\left(g x / b^{2}\right) \theta=0$
Equation (1): should have minus sign before the x^{6} term
Equation (9): integral is missing " $d x$ "
Before Eq. (21): "Using the result of Problem 19 of the ..." (not Problem 18)
Second equation on page: $\ldots+J_{2}(x)\left(t^{2}+1 / t^{2}\right)+\ldots(+$ sign, not -$)$
Problem 24: The second J inside the integral is $J_{n}\left(\beta_{j}\right)$.

Chapter 13

627 Line after (6): "Any point for which $\dot{x}=\dot{y}=0$ is called a critical point."
6292 lines before (17): "such as $(\pi, 0)$ "
631 After Equation (20), ($\left.\dot{x}^{2}+x^{2}\right)$ should be replaced by $\left(\dot{x}^{2}+\omega^{2} x^{2}\right)$ in 3 places

Chapter 14

671 Figure 14.3: Charges are at $y= \pm l / 2$ (not stated explicitly anywhere, but used in results.)
671 Expression for M_{2} before Equation (18): each $q l^{2} / 2$ should be $q l^{2} / 4$
672 After Example 3: "The quantities M_{n} in Equation 16 are called multipole moments, ..." This is inconsistent with the very next sentence, since $M_{1}(=\mu \cos \theta)$ is certainly not "the magnitude of the dipole moment μ ". The usual nomenclature is that the multipole moments are the coefficients of $\frac{1}{4 \pi \varepsilon_{0}} \frac{P_{n}(\cos \theta)}{r^{n+1}}$ in the expansion of $V(r, \theta)$
692 Example 2, last equation: $L_{m}(x) L_{n}(x)$ should be $L_{m}^{(\alpha)}(x) L_{n}^{(\alpha)}(x)$.
Eq. (20): First term should be $\left[\frac{d G}{d x}\right]_{z-\varepsilon}^{z+\varepsilon}$, not second derivative.
707 Eq. (22): missing " $d x$ " in integral

Chapter 15

715 First equation of (10): right side should be multiplied by l (i.e. $=\delta_{n m} l$)
717 Second paragraph, line 3: "We'll see in Section 3 ..." (not 4)
731 Equation (6): upper limit of sum is N, not ∞.
732 Equation (11): factor a_{n} is missing from cosine term.
740 Equation (7): note that γ in this section has a different definition than in Section 11.3 Eq. (20).

742 Line 2: underdamped (not undamped)
Equation (14): $x_{n}(t) \approx \ldots$
7434 lines before Example 3: "... or if $\omega_{2}\left[\operatorname{not} \omega_{3}\right]$ is three times $\omega=1$ " - see Equation (10).

Chapter 16

748 Example 1: Solution, lines 1 and 2 should read $\nabla^{2} T=\ldots=-3 T, \partial T / \partial t=-3 \alpha^{2} T$.
763 Example 3: "The final solution is ... $\frac{I_{0}(n \pi r / l)}{I_{0}(n \pi a / l)} \ldots$..".
768 The line after Equation (3): "...where - $\boldsymbol{\beta}^{2}$ is the separation constant."
780 Equation (14): After the first equal sign, $v(n u)$ should be v (vee), the same as after the second equal sign.

781 In the second equation for $u(x, y, 0)$, the sums begin with $n=1, m=1(\operatorname{not} 0)$.
782 In the equation before (18), ∇^{2} should be $\nabla^{2} u$.
790 Line 2: $T_{0} \sin ^{2} \pi x / l$
792 Example 3, last 5 lines: missing a factor of T_{0} in the equations for c_{n} and $T(x, t)$.
Equation (6): $\frac{h^{2}}{8 m}(\ldots), \operatorname{not} \frac{\hbar^{2}}{8 m}$
800 Last equation before Table 16.1: $\ldots=\frac{2}{2 n+1} \delta_{l n}$ (See Eq. 14.1.20)
807 Problem 15: Rodrigues formula (not Rodriguez)
817 Example 2: There should be no " $f(t)$ " inside the first integral.

Chapter 17

840 Equation (4) should have $U(x, s)$ in both places.
Equation (8) should have $U(x, s)$.
843 Example 1: Line 2 of example and Line 3 of solutions should both have $u_{t}(x, 0)=0\left(\right.$ instead of $\left.u_{x}\right)$
846 Equation (5): should omit minus sign before i in exponent.
Text in italics near bottom uses x as the variable, instead of t as in equations. Should replace every x by t.
849 Example 2 SOLUTION, line 6: "The zeros of $F(\omega)$ occur at \ldots for $n= \pm 1, \pm 2, \ldots$ " (not $n=0$, since $\lim (\sin x / x)=1$.)
851 Equation (17): The last factor inside the first integral is $e^{-i u k}$ (not $e^{-i u x}$).

Chapter 18

875 Example 1 SOLUTION should begin $f^{\prime}\left(z_{0}\right)=\ldots$
898 Example 4 solution should be $I_{2}=\ldots=\pi i(7 \cosh 1-4 \sinh 1)$ (and also in last line)
9032 lines before Equation (6): "... where $|(z-a) /(\zeta-a)|<1$ " (absolute value missing)
9051 line after Equation (12): "... Laurent series with $b_{n}=0$..." (not $\left.b_{-n}\right)$
914 The equation after Equation (6) should begin: $f(z)=\frac{g(a)}{(z-a)^{N}}+\ldots$ (not " $g(z)=\ldots$ ")

Incorrect Answers to selected problems

(there are many more, but I haven't kept track of them)
1128 Problem 4.6.2 " $+2 \pi k$ " is incorrect
1143 Problem 16.2.3 sinh term contains n and is inside the sum
1147 Problem 17.5.10 Exponent is -2 $(i x+|x|)$

