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Abstract: 

The Wigner-Brillouin perturbation method is applied to the Fermi Pasta Ulam system of 

coupled oscillators. The analytic solutions from the perturbation method are compared to 

numerically integrated solutions to check the validity of the method. 

 

I. Introduction 

The Fermi Pasta Ulam experiment was the first scientific foray into the realm of 

numerical experiments. Physicist Enrico Fermi was working at Los Alamos National 

Laboratory in New Mexico during the early 1950s when a large computer was constructed 

to run numerical calculations for the Manhattan Project. Fermi was given access to the 

computer, named MANIAC I (Mathematical Analyzer, Numerical Integrator And Computer), 

and decided to run “numerical experiments” on the computer. He enlisted the help of 

computer scientist John Pasta and mathematician Stanislaw Ulam to help him on the 

project. 

Fermi, Pasta and Ulam decided for their first experiment to study a chain of oscillators, 

all with unitary mass. They wanted to investigate a system that had previously been 

immune to analytic solutions, which meant that they would be looking at nonlinear 

systems. So, in addition to the linear potential between adjacent oscillators, they studied 

additional nonlinear interaction potentials. One of the first that they tried, and the one that 

will be the focus of this paper, was the cubic potential, where the energy is dependent not 

only on the square of the distances between adjacent oscillators but also on the cubes of 

the distances between adjacent oscillators. This system is described by the Hamiltonian: 
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where �
 	is the displacement of the i
th

 oscillator with respect to its equilibrium position, �� ≡ 0 and ���� ≡ 0	as boundary conditions, and � is a dimensionless constant that 

regulates the size of the nonlinear term. 

 With this system Fermi, Pasta and Ulam hoped to simulate the thermalization of a 

crystal lattice as it reached equilibrium. The basic tenets of statistical mechanics led them to 

believe that as the system evolved it would reach an equipartition of energy, with the same 

amount of energy in each mode of the system. The modes of this system are precisely the 



normal modes, where in each normal mode all of the oscillators have the same frequency. 

The process of finding these normal modes will be discussed in the next section. Once the 

system coordinates have been transformed into normal mode coordinates the Hamiltonian 

becomes: 
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where �
��are constants determined by the linear transformation. It is known that a linear 

system, when initially excited in one of its normal modes, will stay in that normal mode 

indefinitely. However, in our nonlinear system, the coefficients �
�� show how energy is 

transferred from one normal mode to another. 

 

 For their initial experiment Fermi, Pasta and Ulam set this system to run on MANIAC I 

with all of the energy initially in the first normal mode. They expected a slow drift of energy 

from the first normal mode to the other modes, until the equipartition of energy that they 

were expecting was reached. To their surprise, the system behaved in a much different way. 

FIG 1 shows a graph of the energy in the first few normal modes as a function of time. 

Initially all of the energy is in the first normal mode, and then the energy in this mode 

begins to decrease as the energies of the second, third and fourth modes begin to decrease. 

(Only the first four modes are shown for clarity.) But instead of leveling off at the 

appropriate energy level the figure shows that there is an interesting cyclical exchange of 

energy that occurs, with the majority of the energy cycling from the first to the fourth to the 

third to the second mode, and then back down again symmetrically. 
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FIG 1: A plot of the first four normal modes of the Fermi Pasta Ulam system showing the 

recurrence of normal mode energies. This plot is for a system of 32 oscillators with cubic coupling 

and all of the energy initially in the first mode. 



 This behavior was unforeseen by Fermi, Pasta and Ulam, who wrote ”Let us say here 

that the results of our computations show features which were, from the beginning, 

surprising to us. Instead of a gradual, continuous flow of energy from the first mode to 

higher modes, all of the problems show an entirely different behavior.”
[2]

 Over half a 

century later there still remain unanswered questions about the behavior of the system and 

its importance to the field of statistical mechanics. 

 

 Throughout the 1960s physicist Joseph Ford, along with other collaborators, made 

numerous advances in the study of the Fermi Pasta Ulam problem. What will now be 

presented is work based off his papers
[
, in particular the application of perturbation 

techniques to this system in an attempt to find analytical approximations to the equations 

of motion. 

 

II. Perturbation Method 

The process of finding an approximate analytical solution for this nonlinear system 

requires us to 1) find the linear transformation that can take us between the spatial 

coordinates and the normal mode coordinates; 2) use this transformation change 

Hamiltonian (1) into Hamiltonian (2); 3) apply our particular perturbation technique; and 4) 

solve the resulting differential equations. After the analytic solutions have been obtained 

some important characteristics will be pointed out graphically. Since the 2-oscillator case 

can easily be generalized to ! oscillators, that case will be used to develop this process. 

First we must find the linear transformation. In order to do this we need to 

simultaneously diagonalize the kinetic energy and the linear potential energy terms in the 

Hamiltonian that corresponds to the system 
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The resulting Hamiltonian, when written in the framework of linear algebra, becomes 
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These two matrices can be simultaneously diagonalized only if they commute. Since they do 

in fact commute, and since the first matrix is already diagonalized, we only need to 

diagonalize the second matrix. To diagonalize a matrix ' we must find the matrix  ( such 

that the columns of ( are the eigenvectors of '. Then the following relation holds, 

) = (*�'( 

where the diagonal entries of matrix ) are the eigenvalues of ' and all other entries are 

zero. Additionally, we will use the normalized eigenvectors of the system. The result of this 

calculation is 
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( is the transformation matrix that we need to apply to the spatial coordinate vector to find 

the normal coordinate vector: 
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Therefore, if we substitute the expressions 
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into  Hamiltonian (1), we get 
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which is of the form of Hamiltonian (2). Once we have the Hamiltonian we can easily 

convert this expression into the Lagrangian, and then use the Euler-Lagrange equations to 

yield the following equations of motion: 

�"� + 3�� = − �
√2 ���� − 3���� 

              �"� + �� = −√2����� 

We now have the nonlinear set of equations for the normal mode coordinates �
 that we 

would like to solve. In order to accomplish this task we are going to approximate the 

solutions using perturbation theory. The particular method used is the Wigner-Brillouin 

method, first employed by Joseph Ford in the study of this problem in reference [4]. For this 

method we assume solutions of the form 
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where the Ω
’s are to be determined from the resulting equations, the '
’s and 4
’s are to 

be determined from initial conditions, and the �
�’s can be solved for in a successive 

manner. By plugging these power series expansions of �� and �� into the differential 

equations above we obtain 
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where ��� = '� cos�Ω�3 + 4��, ��� = '� cos�Ω�3 + 4��, and the �
’s are the appropriate 

eigenfrequencies. In order for these equations to hold each power of � must independently 

equal zero. Notice that in order to solve for ���, ��� we must know ���, ���, and to solve for ���, ���we must know ���, ���, etc. In this way we can solve for the ;CD order of � if and 

only if we know the solutions for the 0CD  through the �; − 1�ECorder of	�.  

 There are various ways to solve this system of equations, the specifics of which will not 

be mentioned here. Solving these equations only up to first order in � yields 
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where F
 = Ω
3 + 4
 , ; = 1,2. Although it may not be readily apparent from the above 

equations, if we include the second order perturbation then we will find further restrictions 

on the Ω
’s. The above equations for �� and �� are what we sought at the beginning of this 

section. They are the equations of motion for the two normal modes of the system, from 

which we can learn more about the behavior of the system by adjusting the various 

parameters. Furthermore, using the linear transformation we found earlier in this section, 

we can transform these equations to obtain the equations of motion for the individual 

oscillators, which could also shed light on the behavior of the system.  

It is important to keep in mind that these analytical solutions arose from the application 

of a perturbation technique to the given system, and therefore do not represent the true 

behavior of this system. Of course we hope that the perturbation method used will provide 

an accurate approximation to the real behavior, and to assure ourselves of this we will 

compare system behavior through direct numerical integration and through the 

perturbation method in the fourth section. One attribute we hope to recover in the system 

is the conservation of energy, which also serves as a simple check on the validity of the 

Wigner-Brillouin technique in this case. FIG 2 shows the plot of the spatial coordinate 

Hamiltonian 
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where we have transformed back into the spatial coordinates and put all of the initial 

energy into the first normal mode. There are 0.75 units of energy in the actual system, and 

our perturbation approximation stays within 0.25% of this value. 



FIG 3: A plot of the total energy in the actual system (black 

dashed) along with a plot of the total energy from the 

numerical solution using 5 digits of accuracy (blue) and 10 

digits of accuracy (red). 

III. Numerical Integration 
 

Next we will turn to a numerical 

integration scheme to approximate 

the solution numerically. As before 

we will check the validity of the 

resulting solution first by ensuring 

that the total energy of the system is 

conserved. 

 

The numerical integration was 

performed by the Wolfram 

Mathematica 7.0 program, using the 

command NDSolve. This command 

takes as an argument a system of 

equations, including initial conditions, 

and the desired accuracy of the 

computations. Mathematica will 

automatically select the most 

appropriate numerical integration 

method to use, although it can use 

one particular scheme if desired. FIG 

3 shows the total energy of the 

system resulting from two numerical 

integrations. The blue line shows the 

integration with 5 digits of accuracy 

preserved, which loses energy at a 

rate of 0.0086% of the initial energy 

per period over the interval shown. 

The red line shows the integration 

with 10 digits of accuracy preserved, 

which is exactly 0.75 to within 10 

digits of accuracy. 

 

 

IV. Comparing Results 

 
It now remains to be seen whether or not the perturbation approximation found in 

Section II accurately reflects the behavior of the system. It has already been shown that 

conservation of energy is maintained to within 0.25% of its initial value – but that does not 

shed any light on the particular dynamics of the system. In this section we will compare the 

analytic solutions obtained from the Wigner-Brillouin perturbation technique to the 

FIG 2: A plot of the total energy in the actual system (black 

dashed) along with a plot of the total energy from our 

perturbed solution (blue). Here � = 0.1. The maximum energy 

in the perturbed solution is 0.751835 units of energy 

(0.75+0.245%) while the minimum is 0.74937 units of energy 



FIG 4: A) Position vs. time plot for the first oscillator. The 

numerical solution the black dashed line while the

perturbed solution is the solid blue line. 

time plot for the difference of the numerical and 

perturbed solutions. 
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FIG 5: Normal modes for a discrete number of 

points, adapted from [5]. 

) Position vs. time plot for the first oscillator. The 

numerical solution the black dashed line while the 

perturbed solution is the solid blue line. B) Position vs. 

time plot for the difference of the numerical and 

solutions obtained through numerical 

integration. All perturbed solutions 

considered in the following plots 

correspond to the case � =
 

FIG 4A shows the numerical (dashed 

black) and perturbed solutions (solid blue) 

of the first oscillator plotted alongside 

each other during the 30
th

oscillation. It can be seen that the 

perturbed solution has started to fall out 

of phase with the numerical so

which is attributed to a shift in the period 

that is not manifested in the first order 

perturbation solution. In fact, as stated in 

Section II, the second order perturbation 

will give further restrictions on the 

which will shift them. FIG 4B

difference of the numerical and 

perturbed solutions plotted through 30 

periods of oscillation. The growth of the 

oscillations in this graph indicates that the 

perturbed solution is diverging from the 

numerical solution. This fact means that 

in order to glean any useful observations 

about the behavior of the system from the 

perturbed solutions we must either 

restrict ourselves to small values of time 

or improve the perturbed solutions by 

moving to the second order.

 

This agreement between the solutions 

in the oscillator coordinates allows us to 

make similar comparisons between the 

normal mode solutions, which is what is 

really of interest to us. Recall that the 

method used by Fermi, Pasta and Ulam 

was to look at the normal mode energies 

of the system as it evolved in time. The 

number of normal modes in a given 

oscillator system is equal to the number of 

oscillators (see FIG 5), so in this case we 

have two normal modes. For in

conditions we will put all of the energy of iscrete number of 
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FIG 6: The two normal modes of the ! = 2, � = 0.1 system. 

Plotted are the perturbation solutions, for the Fermi, Pasta and 

Ulam frequencies �� = 1, �� = √3. Different values for the 

frequencies will correspond to more or less energy sharing 

between the modes. 

FIG 7: A) The first normal mode energy of the system, and B) the second normal mode energy of the system. In both 

plots the blue line corresponds to the perturbed solution and the black line corresponds to the numerical solution. 

the system into the potential 

energy of the first normal 

mode. Corresponding to these 

initial conditions we expect to 

see all of the energy initially in 

the first normal mode, and then 

move from the first normal 

mode to the second normal 

mode through the coupling of 

normal modes brought about 

by the nonlinear interaction 

between them.  

 

FIG 6 shows the two normal 

mode energies as a function of 

time over 30 periods. The entire 

energy of the oscillation is initially 

contained in the first mode, and 

then moves to the second mode. 

The energy in the second mode reaches a maximum after two periods of the system, and 

then begins to decrease again. The amount of energy that is transferred between modes 

depends on the periods of oscillation of the normal modes. Here there is a small amount of 

energy shared, but at frequencies closer to a resonance condition the modes can actually 

transfer all of the energy of the system between themselves.
[4]

 

 

FIG 7A shows the amount of energy in the first mode as a function of time. The blue line 

corresponds to the perturbed solution while the black line corresponds to the numerical 

solution. As the number of periods increases the analytic solution again begins to diverge 

from the numerical solution. This is more easily seen in FIG 5c, the corresponding plot for 

the second mode energy. During the first normal mode period the two solutions are 

matched almost exactly, but by the fourth considerable differences are already beginning to 

develop. 
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V. Conclusion 
 

The problem initially confronting Fermi, Pasta and Ulam was to find a way to investigate a 

nonlinear system using new computing technologies. After they successfully translated the 

problem into a numerical experiment, the problem of explaining their unexpected results 

became a challenge to physicists, mathematicians and computer scientists alike. Although great 

progress was made during the 1960s and afterwards, there has yet to be a satisfactory theory 

that explains all of the curious aspects of this system’s behavior. 

 

The goal of this paper has been to validate the use of the Wigner-Brillouin perturbation 

technique with the Fermi Pasta Ulam system. After developing the method for the two 

oscillator case the analytic results were compared to numerically obtained results to establish 

whether or not this method is appropriate for the system. The perturbation solutions agree 

very well with the numerical solutions and conserve energy for over 30 periods to within 0.25%. 

However, as time increases the solutions begin to diverge from the numerical solutions, limiting 

their use for characterizing the system at large times. One possible approach to improve the 

solution would be to take the perturbation approximation out to higher orders, although even 

the second order perturbation becomes complicated. 

 

There are many possible paths to follow from this point, as many aspects of this 

perturbation solution have not been considered here. The accuracy of the perturbation solution 

as a function of the perturbation parameter � needs to be considered, because the Wigner-

Brillouin technique requires a small perturbation to be effective. Larger numbers of oscillators 

should also be considered and the resulting perturbation solutions should be compared to 

numerical solutions in order to verify that the theory holds independent of oscillator number. 

Lastly, and one of the most interesting paths, is that of finding curious behavior in these 

systems and attempting to pinpoint the cause of this behavior within the analytic solutions 

themselves. This of course could be a tedious exercise but one that might yield physical 

explanations for these behaviors, including energy sharing, energy recurrence, and of course 

the absence of any equipartition of energy within the system. 
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