Additional problem (this is NOT an FFT problem!)

Additional problem. In this problem you will generalize the results about Gabriel's horn (shown in Exercise 8.2/25). Consider the region

$$\mathscr{R}_{\alpha} = \left\{ (x, y) \, \middle| \, x \ge 1, \ 0 \le y \le \frac{1}{x^{\alpha}} \right\} ,$$

in the (x, y)-plane, where α is a positive constant (not necessarily integer). Let \mathscr{D}_{α} be the solid of revolution obtained by rotating \mathscr{R}_{α} about the x-axis.

- (a) Find the range of values of α for which the volume of \mathscr{D}_{α} is finite, by using the method of slicing \mathscr{D}_{α} by parallel planes (as in Section 5.2). Find the volume of \mathscr{D}_{α} for the values of α for which this volume is finite.
- (b) Find the range of values of α for which the volume of \mathscr{D}_{α} is finite, by using the method of cylindrical shells (as in Section 5.3). Find the volume of \mathscr{D}_{α} for the values of α for which this volume is finite. (Of course, the result should be the same as in part (a), but obtained in a different way.)
- (c) Set up the integral for the (side) surface area of \mathscr{D}_{α} . Show that for $\alpha > 1$ the (side) surface area is finite. Do *not* attempt to solve the integral, use the Comparison Theorem.
- (d) Use the Comparison Theorem to show that for $\alpha < 1$ the (side) surface area is infinite.