Some methods for approximate computation of definite integrals

Goal: Compute approximately the numerical value of the integral

$$I_{\text{exact}} = \int_{a}^{b} f(x) \, dx$$

for a given function f and finite numbers a, b ("finite" means that they are not ∞ or $-\infty$).

Notations. Let n be a natural number (i.e., a positive integer), and x_j (with j = 0, 1, ..., n) are numbers such that

 $a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$.

For simplicity, we assume that the numbers x_i are equidistant, i.e., that

$$x_i - x_{i-1} = \Delta x = \frac{b-a}{n}$$
 for every $i = 0, 1, \dots, n$.

With this choice, we have $x_i = a + i \Delta x$, i = 0, 1, ..., n.

Simplest methods:

- left Riemann sums: $L_n = \sum_{i=1}^n f(x_{i-1}) \Delta x$;
- right Riemann sums: $R_n = \sum_{i=1}^n f(x_i) \Delta x$;

• midpoint rule:
$$M_n = \sum_{i=1}^n f\left(\frac{x_{i-1} + x_i}{2}\right) \Delta x$$
;

• trapezoidal rule:
$$T_n = \left[f(x_0) + 2\sum_{i=1}^{n-1} f(x_i) + f(x_n) \right] \frac{\Delta x}{2} ;$$

• Simpson's rule (the integer *n* must be even):

$$S_n = \left[f(x_0) + 2\sum_{i=1}^{n/2-1} f(x_{2i}) + 4\sum_{i=1}^{n/2} f(x_{2i-1}) + f(x_n) \right] \frac{\Delta x}{3}$$

Errors of the different methods: Let $E_n = |I_{approx} - I_{exact}|$ be the (absolute) error of a method, then

- the errors of the left and right Riemann sums behave like $C(\Delta x)$;
- the errors of the midpoint and the trapezoidal rules behave like $C(\Delta x)^2$;
- the error of the Simpson's rule behaves like $C(\Delta x)^4$.

A numerical example: In the Mathematica notebook

http://www2.math.ou.edu/~npetrov/illustration-approximate-integration-methods.nb

a printout of which can be found at

http://www2.math.ou.edu/~npetrov/illustration-approximate-integration-methods.pdf

The approximate values of the integral

$$I_{\text{exact}} = \int_4^9 \sqrt{x} \, dx = \frac{38}{3}$$

has been computed by using each of the above methods for approximate integration, for n = 10, 100, 1000, 10000, and 100000. The (absolute) errors are displayed in the table below.

n	$ L_n - I_{\text{exact}} $	$ R_n - I_{\text{exact}} $	$ M_n - I_{\text{exact}} $	$ T_n - I_{\text{exact}} $	$ S_n - I_{\text{exact}} $
10	$2.51735 imes 10^{-1}$	2.48264×10^{-1}	$8.67285 imes 10^{-4}$	1.73523×10^{-3}	3.47115×10^{-6}
100	$2.50173 imes 10^{-2}$	$2.49826 imes 10^{-2}$	8.68047×10^{-6}	$1.73610 imes 10^{-5}$	3.53252×10^{-10}
1000	2.50017×10^{-3}	$2.49982 imes 10^{-3}$	$8.68055 imes 10^{-8}$	$1.73611 imes 10^{-7}$	$3.53316 imes 10^{-14}$
10000	2.50001×10^{-4}	2.49998×10^{-4}	8.68055×10^{-10}	1.73611×10^{-9}	3.53317×10^{-18}
100000	2.50000×10^{-5}	2.49999×10^{-5}	8.68055×10^{-12}	1.73611×10^{-11}	3.53317×10^{-22}

Note how the errors decrease as n increases by a factor of 10, and therefore Δx decreases by a factor of 10, for each of the methods. Compare this numerical observation with the theoretical results on the errors of the different methods given above.