Some methods for approximate computation of definite integrals

Goal: Compute approximately the numerical value of the integral

$$
I_{\text {exact }}=\int_{a}^{b} f(x) d x
$$

for a given function f and finite numbers a, b ("finite" means that they are not ∞ or $-\infty$).
Notations. Let n be a natural number (i.e., a positive integer), and x_{j} (with $j=0,1, \ldots, n$) are numbers such that

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b .
$$

For simplicity, we assume that the numbers x_{i} are equidistant, i.e., that

$$
x_{i}-x_{i-1}=\Delta x=\frac{b-a}{n} \quad \text { for every } i=0,1, \ldots, n
$$

With this choice, we have $x_{i}=a+i \Delta x, i=0,1, \ldots, n$.

Simplest methods:

- left Riemann sums: $\quad L_{n}=\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x ;$
- right Riemann sums: $\quad R_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x ;$
- midpoint rule: $\quad M_{n}=\sum_{i=1}^{n} f\left(\frac{x_{i-1}+x_{i}}{2}\right) \Delta x ;$
- trapezoidal rule: $T_{n}=\left[f\left(x_{0}\right)+2 \sum_{i=1}^{n-1} f\left(x_{i}\right)+f\left(x_{n}\right)\right] \frac{\Delta x}{2} ;$
- Simpson's rule (the integer n must be even):

$$
S_{n}=\left[f\left(x_{0}\right)+2 \sum_{i=1}^{n / 2-1} f\left(x_{2 i}\right)+4 \sum_{i=1}^{n / 2} f\left(x_{2 i-1}\right)+f\left(x_{n}\right)\right] \frac{\Delta x}{3}
$$

Errors of the different methods: Let $E_{n}=\left|I_{\text {approx }}-I_{\text {exact }}\right|$ be the (absolute) error of a method, then

- the errors of the left and right Riemann sums behave like $C(\Delta x)$;
- the errors of the midpoint and the trapezoidal rules behave like $C(\Delta x)^{2}$;
- the error of the Simpson's rule behaves like $C(\Delta x)^{4}$.

A numerical example: In the Mathematica notebook
http://www2.math.ou.edu/~npetrov/illustration-approximate-integration-methods.nb
a printout of which can be found at
http://www2.math.ou.edu/~npetrov/illustration-approximate-integration-methods.pdf
The approximate values of the integral

$$
I_{\text {exact }}=\int_{4}^{9} \sqrt{x} d x=\frac{38}{3}
$$

has been computed by using each of the above methods for approximate integration, for $n=10,100,1000$, 10000 , and 100000. The (absolute) errors are displayed in the table below.

n	$\left\|L_{n}-I_{\text {exact }}\right\|$	$\left\|R_{n}-I_{\text {exact }}\right\|$	$\left\|M_{n}-I_{\text {exact }}\right\|$	$\left\|T_{n}-I_{\text {exact }}\right\|$	$\left\|S_{n}-I_{\text {exact }}\right\|$
10	2.51735×10^{-1}	2.48264×10^{-1}	8.67285×10^{-4}	1.73523×10^{-3}	3.47115×10^{-6}
100	2.50173×10^{-2}	2.49826×10^{-2}	8.68047×10^{-6}	1.73610×10^{-5}	3.53252×10^{-10}
1000	2.50017×10^{-3}	2.49982×10^{-3}	8.68055×10^{-8}	1.73611×10^{-7}	3.53316×10^{-14}
10000	2.50001×10^{-4}	2.49998×10^{-4}	8.68055×10^{-10}	1.73611×10^{-9}	3.53317×10^{-18}
100000	2.50000×10^{-5}	2.49999×10^{-5}	8.68055×10^{-12}	1.73611×10^{-11}	3.53317×10^{-22}

Note how the errors decrease as n increases by a factor of 10 , and therefore Δx decreases by a factor of 10 , for each of the methods. Compare this numerical observation with the theoretical results on the errors of the different methods given above.

