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1 Introduction

Symmetry and reduction have always – sometimes implicitly – been among
the main tools in the arsenal of theoretical physics. Many methods that utilize
the symmetry of physical systems have been proposed.

In this paper we develop a technique for dimensional reduction of invariant
vector fields and one-forms, as well as for reduction of invariant differential
operators. We use the methods of differential geometry which allow us to make
the reduction procedure simple and natural. In the second part of the paper
[5] (briefly referred to as Part II), we apply our method to the problem of
obtaining conformally invariant fields and differential operators in Minkowski
space.

The main ideas of our method are the following. Let the Lie group G act by
bundle morphisms on the vector bundle ξ over a smooth finite-dimensional
manifold B, and let C∞(ξ)G stand for the set of all G-invariant sections of ξ.
Our goal is to construct the reduced bundle ξG, i.e., a bundle the space of whose
sections, C∞(ξG), is in a bijective correspondence with C∞(ξ)G. We give the
construction of the reduced bundle ξG (if certain conditions are satisfied).

The construction of the reduced bundle is easily applicable to the important
particular cases of the tangent and cotangent bundles of B. In these two cases,
the action of G naturally yields certain G-intertwining short exact sequences
of vector bundles. It turns out that these sequences are very useful for the
classification of the G-invariant vector fields and one-forms.

The dimensional reduction of differential operators is based on the jet bundle
picture. The language of jet bundles reveals the geometry of the differential
operators and – on the technical side – reduces the operations on differential
operators to simple algebraic manipulations. The essential ingredient of the
dimensional reduction of a differential operator in this formalism is the restric-
tion of the operator to a submanifold of B. To perform this restriction, one has
to find splittings of certain short exact sequences of jet bundles. In the case of
G-invariant differential operators, this splitting is provided automatically by
the G-invariance.

Our method is purely geometric, using only the geometrically natural struc-
tures on the manifold. It applies to any smooth finite dimensional manifold B
and to any Lie group G. We note that the method we propose can be applied
whether or not the group G is compact or not. If G is non-compact, some
interesting phenomena may occur – a simple example is given in Appendix A
of Part II.

This method is applicable to tensor products of vector bundles and to spinor
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bundles, which we plan to study in near future. We believe that our technique
can be useful in Kaluza-Klein-type theories.

The plan of the first part of the paper is the following. In Section 2 we describe
the method for dimensional reduction, paying special attention to the case of
dimensional reduction of the tangent and cotangent bundles. In Section 3 we
briefly introduce some notions from the theory of differential operators on vec-
tor bundles, and in Sections 4 and 5 we develop the technique for dimensional
reduction of invariant differential operators. In Section 6 we explain how to
reduce the action of a Lie group K whose action on ξ commutes with that of
the reducing group G.

In the second part of the paper, we apply our method to obtain conformally in-
variant vector fields, one-forms and differential operators in Minkowski space.
This construction is based on the observation of Dirac from the 1930’s that the
conformal group in Minkowski space is locally isomorphic to the orthogonal
group in the six-dimensional space with signature (2, 4). Our method allows
us to find the global transformation laws of the fields, the invariant subbun-
dles, and the so-called equations of conformal electrodynamics as well as the
admissible gauge transformations.

2 Dimensional Reduction of Tangent and Cotangent Bundles

Here we describe the method of dimensional reduction, paying special atten-
tion to the dimensional reduction of the tangent and cotangent bundles of a
smooth manifold. All manifolds, bundles and mappings in the text are sup-
posed to be smooth (C∞).

LetB be a finite dimensional manifold and ξ = (E, π,B) be a finite-dimensional
vector bundle over B; let ξb = π−1(b) denote the fiber of ξ over the point b ∈ B.
Let C ⊂ B be a submanifold of B, and let ξC (or ξ|C) stand for the bundle i∗ξ
induced by the natural embedding i : C ↪→ B; in other words, ξC = (E ′, π′, C),
where E ′ := π−1(C) and π′ is the restriction of π to E ′. By “dimension of the
bundle” we will mean the dimension of the typical fiber. The vector space of
all sections of ξ will be denoted by C∞(ξ).

Let the Lie group G act from the left on ξ by vector bundle morphisms, and let
T : G×E → E and t : G×B → B be the actions of G on the total space and
the base respectively (i.e., π ◦Tg = tg ◦π and the restriction Tg : ξb → ξtg(b) be
a linear isomorphism for each g ∈ G). This action naturally induces an action
of G on C∞(ξ) by

g(ψ) := Tg ◦ ψ ◦ t−1
g , g ∈ G , ψ ∈ C∞(ξ) .
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The subspace of C∞(ξ) consisting of all G-invariant sections will be denoted
by C∞(ξ)G.

Under certain conditions, there exists a vector bundle ξG, called a reduced
vector bundle, such that the space C∞(ξG) of all its sections is in a bijective
correspondence

θ : C∞(ξG) −→ C∞(ξ)G (1)

with the space C∞(ξ)G of all G-invariant sections of ξ. The group G will
be referred to as a reducing group and the procedure as a G-dimensional
reduction. Below we discuss the conditions imposed on the action of G on ξ.

Condition A. The G-orbits on B are of one and the same type and form a
locally trivial bundle

p : B −→ B/G , (2)

where p is the natural projection.

The fibers of (2) are homogeneous G-spaces of type G/H where H is some
closed subgroup of G. The group G acts naturally on G/H from the left by
g [g′] := [gg′]. The local triviality of (2) means that each point x ∈ B/G has a
neighborhood V ⊆ B/G such that there exists an isomorphism Φ : p−1(V )→
V × (G/H) satisfying the relation

Φ ◦ tg(b) = (p(b), g [π2 ◦ Φ(b)]) ,

where b ∈ p−1(V ), g ∈ G, and π2 is the canonical projection

π2 : V × (G/H) −→ G/H : (v, [g]) 7−→ [g] .

Condition B imposes restrictions on the action T of G on the total space E.
If Gb is the stationary group of b ∈ B, then the restriction T : Gb × ξb → ξb
determines a linear representation of Gb in ξb. Let st ξb be the subspace of ξb
consisting of all vectors fixed with respect to the representation of Gb in it:

st ξb := {u ∈ ξb | Tg(u) = u ∀g ∈ Gb } .

The importance of the subspaces st ξb in the construction of ξG is due to the
fact that if ψ is a G-invariant section of ξ, then ψ(b) ∈ st ξb for each b ∈ B.

Condition B. The set of vector subspaces st ξb ⊆ ξb form a vector subbundle
st ξ which will be called a stationary subbundle of ξ.
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If the above two conditions are satisfied, the vector bundle ξ will be called a G-
reducible vector bundle. Its reduced vector bundle, ξG, is a vector bundle over
B/G and has the same dimension as st ξ. The local coordinate realizations of
st ξ can be constructed as follows. Let {Vα} be a cover of B/G, and φα : Vα →
B be local sections of the bundle (2). Let Nα := φα(Vα) be the graphs of φα
(Nα are submanifolds of B transversal to the orbits of G and of dimension
equal to the one of B/G), and iα : Nα ↪→ B be the natural embeddings. Then
the restrictions ξG|Nα := st ξ|Nα = i∗α(st ξ) are the coordinate realizations of
ξG. The cocycle gluing these representations can be naturally constructed with
the help of the action of G on ξ [4]. Since the general procedure contains many
technicalities, and in the physical example considered in the second part of
the paper we do not need more than one chart, we do not treat the general
case.

Remark 2.1 In general, the reduced bundle ξG is constructed as the set of its
coordinate realizations and the morphisms of transition between them. A coor-
dinate realization of ξG is obtained by taking a submanifold N ⊂ B transversal
to the G-orbits in B (i.e., by choosing a section of the bundle (2) whose image
is transversal to the G-orbits), and restricting the base of the stationary sub-
bundle st ξ to N . The transition morphisms come from the action of the group
G. It is possible that the bundle (2) do not have a global section. In this case
we have to consider a sufficient set of transversal local sections. The maximal
atlas of the reduced bundle ξG is the set of all transversal local sections of
p : B → B/G and all transition morphisms.

A different choice of a local realization N of B/G would amount only to a
reparametrization and would not change the essential features of the reduced
objects. In this sense, we can say that θ and ξG do not depend on N .

Remark 2.2 The set C∞(ξ)G of all G-invariant sections of ξ form a module
over the set of G-invariant functions in the base B because each G-invariant
function is constant on each orbit of G in B. On the other hand, the sec-
tions, C∞(ξG), of the reduced bundle ξG are a module over the ring C∞(B/G).
From our construction, it is clear that the map θ is a homomorphism of the
C∞(B/G)-module C∞(ξG) to the C∞(B)G-module C∞(ξ)G.

Let us consider in detail the case of the tangent bundle τ(B) = (T (B), π, B) of
a finite-dimensional manifold B. Let the action of the Lie group G on B satisfy
condition A. Then the tangent lift of t, t∗ : G × T (B) → T (B), defines an
action (t∗, t) of G on τ(B) which turns τ(B) into a G-reducible vector bundle.
Let τv(B) be the vertical subbundle of τ(B) which by definition consists of
the vectors tangent to the fibers of the bundle (2):

τv(B)b := τ
(
p−1(p(b))

)
b
.

Let p∗τ(B/G) be the bundle over B induced from τ(B/G) by the projection
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p : B → B/G; clearly, G acts trivially on p∗τ(B/G). Then it is known [2,
Sec. IX.1] that there exists a natural short exact sequence (SES)

0 −−−→ τv(B)
i−−−→ τ(B)

j−−−→ p∗τ(B/G) −−−→ 0 , (3)

where i is the natural embedding and j is the natural projection. This SES is
G-intertwining , i.e., the action of G commutes with the morphisms i and j.
Below, we explain how to perform a G-dimensional reduction of (3); we con-
sider only the case of the bundle (2) being globally trivial since it is sufficient
for our purposes.

Let us choose a global section of (2) and denote its graph by N . Then the
restrictions of st τv(B), st τ(B) and st p∗τ(B/G) to N are coordinate realiza-
tions of the reduced bundles τv(B)G, τ(B)G and (p∗τ(B/G))G, respectively.
Obviously, the SES

0 −−−→ τv(B)b
i−−−→ τ(B)b

j−−−→ p∗τ(B/G)b −−−→ 0 (4)

of Gb-modules over b ∈ N is (trivially) intertwining with respect to the corre-
sponding representations of the stationary subgroup Gb.

Now we want to restrict the Gb-modules τv(B)b, τ(B)b, p
∗τ(B/G)b to their

stationary submodules, st τv(B)b, st τ(B)b, and st p∗τ(B/G)b ∼= p∗τ(B/G)b,
respectively. Do the stationary submodules form a SES?

In general, the answer to the above question is negative. To understand why,
let us consider the SES of G-modules

0 −−−→ L0
i−−−→ L

j−−−→ L1 −−−→ 0

intertwining with respect to the corresponding representations D0, D, D1 of
G, i.e., such that

i ◦D0(g) =D(g) ◦ i
j ◦D(g) =D1(g) ◦ j

for each g ∈ G. Then i(L0) is an invariant subspace of L. Each vector l ∈ L
can be represented as

l =

 i(l0)

l̃

 =

 i(l0)

0

+

 0

l̃

 ,

 i(l0)

0

 ∈ i(L0)

for some l0 ∈ L0. Note that this representation of l is not unique since L1 is not
naturally embedded in L. The fact that j ◦ i = 0 implies that j(l) = j((0, l̃)T ).
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In this representation, the action of D(g) can be written as

D(g) l =

 d00(g) d01(g)

0 d11(g)


 i(l0)

l̃

 =

 d00(g) i(l0) + d01(g) l̃

d11(g) l̃

 ,

and

D1(g) ◦ j(l) =D1(g) ◦ j

 i(l0)

l̃

 = j ◦D(g)

 i(l0)

l̃



= j

 d01(g) l̃

d11(g) l̃

 = j

 0

d11(g) l̃

 .

We see that j(l) ∈ stL1 if and only if ∀g ∈ G, d11(g) l̃ = l̃, while l ∈ stL if
and only if ∀g ∈ G,

d00(g) i(l0) + d01 l̃= i(l0)

d11(g) l̃= l̃ .

Hence, in general, the inclusion j(stL) ⊂ stL1 is strict, i.e., the map j :
stL → stL1 may fail to be an epimorphism. If, however, the representation
D is decomposable (i.e., if L is a direct sum of two invariant subspaces), then
the sequence

0 −−−→ stL0
i−−−→ stL

j−−−→ stL1 −−−→ 0

will be a SES ofG-modules. The obstruction to decomposability can be studied
by using tools of algebraic topology; we are planning to explain this in detail
elsewhere.

If condition A is satisfied, then the representation of Gb in τ(B)b is decom-
posable. The proof of the decomposability goes as follows. Since i(τv(B)) is a
G-invariant subbundle of τ(B), i(τv(B)b) is a Gb-invariant subspace of τ(B)b.
Condition A guarantees that for each b ∈ B, there exists a submanifold of B,
namely

W (b) := {Φ−1 (x, π2 ◦ Φ(b)) | x ∈ V ⊆ B/G}
(V is an open subset of B/G containing p(b)), which is transversal to the
orbits of G in B, contains b, and consists of points with one and the same
stationary group Gb. This means that Gb acts trivially on W (b) and, hence, on
τ(W (b)), so τ(W (b))b is the invariant complement of i(τv(B)b) with respect to
the representation of Gb in τ(B)b. Thus, the representation of Gb in τ(B)b is
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decomposable, which yields the SES

0 −−−→ st τv(B)b
i−−−→ st τ(B)b

j−−−→ p∗τ(B/G)b −−−→ 0 .

Finally, taking into account that (p∗τ(B/G))G
∼= τ(N), we obtain that after

a G-dimensional reduction, (3) converts into the SES

0 −−−→ τv(B)G
i−−−→ τ(B)G

j−−−→ τ(N) −−−→ 0 . (5)

The G-dimensional reduction of the cotangent bundle τ ∗(B) is similar. The ac-
tion t ofG onB generates a natural contragradient action (t̂, t) := (t∗−1, t) ofG
on τ ∗(B). The decomposability of the action (t∗, t) implies the decomposability
of (t̂, t), hence after a G-dimensional reduction the dual of (3) G-intertwining
SES goes into the SES

0 ←−−− (τv(B)∗)G
i∗←−−− τ ∗(B)G

j∗←−−− τ ∗(N) ←−−− 0 .

In general, (τv(B)∗)G 6= (τv(B)G)∗ (an example is given in Appendix A of
Part II). However, if all finite-dimensional representations of Gb are decom-
posable (in particular, if Gb is compact), it is easy to prove that these two
bundles coincide.

The set C∞(τ(B))G of all G-invariant vector fields is in bijective correspon-
dence with the set of all sections of the reduced bundle, C∞(τ(B)G). But (5)
implies that

τ(B)G ∼= τv(B)G ⊕ τ(N) ,

hence, there exists a bijective correspondence between the G-invariant vector
fields and the couples of a “scalar field” (a section of τv(B)G) and a vector field
on N . The above construction, however, does not determine a fixed splitting of
(5) because τ(N) is not canonically embedded in τ(B)G. One needs additional
information to fix a certain splitting. The case of G-invariant differential forms
is completely analogous.

Remark 2.3 If C is a G-invariant submanifold of B, the restriction to C
yields naturally the SES

0 −−−→ τ(C)
m−−−→ τ(B)C

n−−−→ ν(C) −−−→ 0 (6)

of vector bundles over C; here ν(C) is the quotient bundle, τ(B)C/τ(C). The
SES (6) and its dual are G-intertwining, which implies the G-invariance of
m(τ(C)) and n∗ (ν∗(C)) as subbundles of τ(B)C and τ ∗(B)C, respectively.

Remark 2.4 Let ζ ∈ C∞(τ(B)) and ψ ∈ C∞ (τ ∗(B)) be a G-invariant vec-
tor field and one-form, respectively. The local coordinates (xµ) of B (µ =
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1, . . . , dimB) induce local coordinates (xµ, dxµ) of τ(B) and (xµ, ∂/∂xµ) of
τ ∗(B). In these coordinates, the conditions for G-invariance of the sections of
τ(B) and τ ∗(B) read

g(ζ)µ(b) := (tg∗ζ)µ (b) =
∂tg

µ (tg−1(b))

∂xν
ζν (tg−1(b)) = ζµ(b) ,

g(ψ)µ(b) := (t̂gψ)µ(b) =
∂tg−1

ν(b)

∂xµ
ψν (tg−1(b)) = ψµ(b) ,

where g ∈ G.

Example 2.1 Let us consider the example of the dimensional reduction of the
O0(3)-invariant vector fields on R3, i.e., let B := R3 \ {0} and let G := O0(3)
act by its tangent lift on τ(R3). (The subscript “0” means “the connected
component of the unit element”.) The orbits of the action of O0(3) on R3 are
the spheres centered at the origin 0 := (0, 0, 0).

For a base N of the reduced bundle (2) we can choose any submanifold diffeo-
morphic to B/G ∼= R+, e.g., N := { (χ(z), 0, z) | z > 0 }, where χ : R+ → R

satisfies χ′(z) > 0 for any z > 0.

For each b := (x, y, z) ∈ B, the vertical subspace, τv(B)b, is the plane τ(Sb)b

tangent to the sphere Sb of radius b :=
√
x2 + y2 + z2 at point b. The 1-

dimensional quotient space p∗τ(B/G)b = τ(B)b/τ
v(B)b can be realized as

any subspace of τ(B)b transversal to τv(B)b.

The stationary subgroup Gb consists of the rotations around the straight line
through the points 0 and b. It acts freely on τ(Sb)b, so st τv(B)b = st τ(Sb)b

consists only of the zero vector at b. Thus, (τv(B)G)b consists only of the zero
vector at b, (τ(B)G)b is the 1-dimensional subspace of the radial vectors at b,
and ((p∗τ(B/G))G)b can be realized as τ(N)b.

3 Differential Operators on Vector Bundles

In this section we briefly introduce the necessary facts and notations concern-
ing the theory of differential operators on vector bundles in terms of jets of
sections. The interested reader can find a succinct introduction to the theory
of jet bundles in [7]; detailed expositions (with numerous examples) can be
found in [6] and [9], and more mathematical aspects in [1].

Let ξ be a vector bundle over V , Ib(B) be the ideal of the ring C∞(B) con-
sisting of all functions vanishing at b ∈ B, and Ikb (B) ⊂ C∞(B) be the ideal
of functions representable as a product of k functions from Ib(B). Let Zk

b (ξ)
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stand for the vector space of those sections of ξ which are products of elements
of Ik+1

b (B) and C∞(ξ), and Jk(ξ)b be the quotient space

Jk(ξ)b := C∞(ξ)/Zk
b (ξ) .

The canonical linear mapping C∞(ξ)→ Jk(ξ)b : ψ 7→ Jk(ψ)(b) maps a section
ψ into its k-jet at b ∈ B, Jk(ψ)(b). The k-jet is the coordinate-free concept
for the section (“the field”) ψ and its derivatives up to order k at b. Hence,
Jk(ψ)(b) = Jk(φ)(b) means that in some (and hence in all) local coordinates,
the Taylor series of ψ and φ around b agree up through order k. The mapping

Jk : C∞(ξ) −→ C∞(Jk(ξ)) : ψ 7−→ Jk(ψ)

is called a k-jet of the section ψ. (To avoid confusion, we would like to alert
the reader that we use the notation Jk(ξ) both for the bundle of jets and
for its total space; in the above formula, C∞(Jk(ξ)) stands for the set of all
sections of the vector bundle Jk(ξ), while in the formula below it means the
total space.)

The vector bundle structure of the union

Jk(ξ) :=
⋃
b∈B

Jk(ξ)b

is natural: the local coordinates (xµ, ua) (µ = 1, . . . , dimB; a = 1, . . . , dim ξ)
of ξ generate local coordinates (xµ, ua, uaµ1

, . . . , uaµ1...µk
), (1 ≤ µ1 ≤ . . . ≤ µi ≤

dimB; i = 1, . . . , k) of Jk(ξ), where

uaµ1...µi

(
Jk(ψ)(b)

)
:=

∂i

∂xµ1 . . . ∂xµi
ψa(b) , (7)

and the transition functions follow from the well-known formulae for transfor-
mation of partial derivatives under a change of variables. From the definition,
J0(ξ) := ξ. The dimension of the vector bundle Jk(ξ) is

dim Jk(ξ) =

(
dimB + k

k

)
dim ξ .

Let πk,l : Jk(ξ) → J l(ξ), k > l ≥ 0 denote the natural projections (“cutting
off” all derivatives of order l + 1, . . ., k).

Let ξ and η be vector bundles over B. A differential operator (DO) of order k
from ξ to η is a mapping

D : C∞(ξ) −→ C∞(η) : ψ 7−→ Dψ
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such that Jk(ψ)(b) = 0 implies Dψ(b) = 0. If D is a linear mapping, it is called
a linear differential operator . Let Diffk(ξ, η) and LDiffk(ξ, η) stand respectively
for the vector spaces of DOs and linear DOs of order k from ξ to η.

There exists a bijective correspondence between the set LDiffk(ξ, η) and the
space Hom(Jk(ξ), η) of vector bundle morphisms over the identity in B. This
correspondence is based on the fact that every vector bundle morphism T :
ζ → η over the identity in B generates naturally a mapping

T∗ : C∞(ζ) −→ C∞(η) : φ 7−→ T∗(φ) := T ◦ φ ,

and each linear DO D ∈ LDiffk(ξ, η) corresponds to a vector bundle morphism
T ∈ Hom(Jk(ξ), η) such that D = T∗ ◦ Jk, i.e., that the diagram

?
D

�������)
T∗

-Jk

C∞(η)

C∞(ξ) C∞(Jk(ξ))

commutes. The morphism T is called the total symbol ofD. For a nonlinear DO
this construction is analogous, but in this case T is simply a fiber preserving
mapping.

Parenthetically, in the language of category theory (see, e.g., [3]), the couple
(Jk, Jk(ξ)) is a universal element for the covariant functor F = (FOb,FMor)
from the category V(B) of vector bundles over B to the category of linear
DOs of order k from ξ ∈ V(B) to another vector bundle over B. Namely, if
η, ζ ∈ V(B) and T ∈ Hom(η, ζ), then

FOb(η) = LDiffk(ξ, η), FMor(T ) = T∗ = T ◦ .

One can differentiate simultaneously both sides of the differential equation
Dψ = φ, thus obtaining a differential operator of higher order acting on ψ.
The formal definition of this is the following. Let D = T∗ ◦ Jk ∈ Diffk(ξ, η).
There exists a unique fiber preserving mapping P l(T ) : Jk+l(ξ)→ J l(η) such
that the diagram

C∞(Jk+l(ξ))
P l(T )∗−−−−→ C∞(J l(η))

Jk+l

x xJ l
C∞(ξ) −−−→

D
C∞(η)

commutes. The l-th prolongation of D is by definition

P l(D) := P l(T )∗ ◦ Jk+l = J l ◦ T∗ ◦ Jk ∈ Diffk+l(ξ, J
l(η)) .
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In general, Rk,l := kerP l(T ) is a family of linear subspaces of the vector bundle
Jk+l(ξ). A DO D ∈ LDiffk(ξ, η) said to be formally integrable if for each l ≥ 0
the following conditions are satisfied

(a) Rk,l is a vector subbundle of Jk+l(ξ);
(b) the natural projection πk+l+1, k+l : Rk, l+1 −→ Rk,l is an epimorphism.

For a formally integrable DO, the subbundle Rk,0 ⊂ Jk(ξ) is called its equation.

The meaning of the formal integrability of a DO is that for a formally inte-
grable DO D ∈ Diffk(ξ, η), by differentiating l times the equation Dψ = 0,
one can never obtain a condition on the derivatives of ψ that contains no
derivatives of order k + l but only lower order derivatives (see the example
below).

The formal integrability of a differential operator can be established by using
methods of homological algebra (for references see, e.g., [1]).

Example 3.1 An example of a differential operator that is not formally in-
tegrable is the following.

Let ξ and η be vector bundles over R3 with typical fibers R and R2, respectively,
and

D :=

 ∂zz − y∂xx
∂yy

 ∈ LDiff2(ξ, η)

(where x, y and z are the coordinates in R3). Then π3,2 : R2,1 → R2,0 is an
epimorphism, but π4,3 : R2,2 → R2,1 is not, because the second prolongation of
D yields the condition uxxy = 0 which was not present in R2,1. In fact, there are
infinitely many conditions of this kind that appear in the higher prolongations,
and the general solution of Dψ = 0 contains only 12 parameters:

ψ(x, y, z) =xy(α1z
3 + 3α2z

2 + α3z + α4) + y(α5z
3 + α6z

2 + α7z + α8)

+(α1x
3 + 3α5x

2 + α9x+ α10)z + α2x
3 + α6x

2 + α11x+ α12 .

This example is studied in detail in the Introduction of [8].

4 Restriction of a Differential Operator to a Submanifold

The dimensional reduction of an invariant DO D ∈ Diffk(ξ, η)G is closely
related to the problem of restricting D to N where N is a submanifold of B.
By “restricting D to N”, we mean constructing a DO DN ∈ Diffk(ξN , ηN)
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from D by means of the natural embedding i : N ↪→ B. This procedure is not
naturally defined, so in this section we will explain how it can be performed.

To understand the problem, let us first consider it in local coordinates. Let
dimB = n, dimN = ν, and let the local coordinates x1, . . ., xn are such that

N = {xν+1 = · · · = xn = 0} .

We will call x1, . . ., xν “internal for N”, and xν+1, . . ., xn “external for N”
coordinates. Let ψ ∈ C∞(ξ), and let ψ ◦ i ∈ C∞(ξN) be its restriction to N .

If we calculate the k-jet of ψ, and then restrict Jk(ψ) to N , we obtain Jk(ψ)◦
i ∈ C∞(Jk(ξ)N). For each b ∈ N , Jk(ψ)(b) contains derivatives with respects
to all coordinates, x1, . . ., xn. At the same time, if we first restrict ψ to N
and then take the k-jet of ψ ◦ i, we obtain Jk(ψ ◦ i) ∈ C∞(Jk(ξN)). Since
ψ ◦ i depends only on the internal for N coordinates, x1, . . ., xν , its k-jet,
Jk(ψ◦i), contains derivatives with respect to these coordinates only. Thus, the

dimensions of Jk(ξ)N and Jk(ξN) are
(
n+k
k

)
dim ξ and

(
ν+k
k

)
dim ξ, respectively.

If D contains only differentiations with respect to internal for N coordinates
(in which case we will say that D is internal for N), the restricted DO DN is
simply equal to D. What to do, however, if D is not internal for N?

Let us first note that there exists a natural projection jk : Jk(ξ)N → Jk(ξN)
which simply is “cutting off” all non-internal derivatives, i.e., those containing
at least one external for N partial derivative. The relationship between the
total symbols of D and DN can be simply expressed with the help of jk by
means of the diagram

?
(T∗)N

�������)
(TN )∗

-jk∗

C∞(ηN)

C∞(Jk(ξ)N) C∞(Jk(ξN))

Clearly, for an internal DO D, the total symbol of DN is defined naturally by
T = TN ◦ jk. If the DO is not internal, one needs some additional information.

Let IkN be the subbundle of Jk(ξ)N consisting of the k-jets of all sections of ξ
that vanish on N :

IkN := {Jk(ψ)(b) | ψ ∈ C∞(ξ) s.t. ψ(b) = 0 ∀ b ∈ N} .

In other words, IkN consists of those elements of Jk(ξ)N all internal for N
derivatives of which (including the zeroth derivatives) are 0. Using the nota-
tions (7), the coordinates of the elements of IkN satisfy

ua = 0 , uaµ1...µi
= 0 , 1 ≤ µ1 ≤ . . . ≤ µi ≤ ν , i = 1, . . . , k .
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If ik : IkN ↪→ Jk(ξ)N is the natural embedding, then clearly jk ◦ ik = 0, and
the horizontal sequence in the diagram below is exact:

0 - IkN
-i

k

Jk(ξ)N -j
k

Jk(ξN) - 0 .
���

����
TN

?
T

ηN

?
S

(8)

The essence of the problem of restricting a DO to N is that while Jk(ξ)N ∼=
IkN ⊕ Jk(ξN), the bundle Jk(ξN) is not naturally embedded in Jk(ξ)N . There-
fore, to define TN , one needs to choose a fiber preserving mapping S : Jk(ξN)→
Jk(ξ)N over the identity in N such that

jk ◦ S = identity in Jk(ξN) . (9)

Then the total symbol of DN is defined by

TN = T ◦ S . (10)

The condition (9) on S guarantees that for an internal for N DO, (10) yields
a DO coinciding with the natural restriction of D to N . The mapping S is
called a splitting relation.

One can define S by specifying its image S(Jk(ξN)) ⊂ Jk(ξ)N , which can be
defined as a kernel of the total symbol T of some DO D of order k acting on
C∞(ξ).

To clarify the matters, let us consider the following example (more examples
will be given in Part II).

Example 4.1 Let B := R2 and (x, y) be the Cartesian coordinates, let ξ be a
globally trivial bundle over B with fiber R, and let N := {y = 0} ⊂ B.

Then the fiber coordinates of J2(ξ)N are (u, ux, uy, uxx, uxy, uyy), while the fiber
coordinates of J2(ξN) are only the ones that do not contain y-derivatives, i.e.,
(u, ux, uxx).

The Laplacian ∆ := ∂xx + ∂yy ∈ LDiff2(ξ, ξ) is not internal for N because it
contains y-derivatives.

Let us choose the splitting condition S to be defined by specifying its image,
S(Jk(ξN)) := ker T , where T is the total symbol of the DO D := ∂xx−∂yy+3∂x.
Then uyy can be expressed as uyy = uxx+3ux, so the restricted to N Laplacian
becomes ∆N = 2∂xx + 3∂x ∈ LDiff2(ξN , ξN).
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Remark 4.1 In general, the order of DN can be higher that the order of D; for
example, if in the above example we had chosen S = uxxx − 2uxx − uyy − 2ux,
then the reduced Laplacian would have become ∆N = ∂xxx − ∂xx − 2∂x ∈
LDiff3(ξN , ξN). This can happen when S contains derivatives of order higher
than the order of D. However, a DO D ∈ Diffm(ξ, η) can be considered as
an element of Diff l(ξ, η) for all l > m. Therefore, all constructions from this
section hold if by k we mean the maximum of the ofder of D and the order of
the highest derivative in the splitting relation S.

5 Dimensional Reduction of Invariant Differential Operators

Let ξ and η be G-reducible vector bundles over the manifold B with the same
action t of G on B. Then the actions of g ∈ G on C∞(ξ) and C∞(η),

gξ : ψ 7−→ T ξg ◦ ψ ◦ t−1
g , gη : χ 7−→ T ηg ◦ χ ◦ t−1

g ,

generate an action of g on the DOs:

g(D) := gη ◦D ◦ (gξ)−1 , D ∈ Diffk(ξ, η)

A DO D ∈ Diffk(ξ, η) is G-invariant if g(D) = D. The space of all G-invariant
DOs will be denoted by Diffk(ξ, η)G. If ψ ∈ C∞(ξ)G and D ∈ Diffk(ξ, η)G, then
Dψ ∈ C∞(η)G, therefore each G-invariant DO D generates a reduced DO

DG := θ−1 ◦D ◦ θ : C∞(ξG) −→ C∞(ηG) ,

where θ is the map defined in (1). To construct DG, one must do the following:

(a) find the stationary subbundles st ξ and st η;
(b) choose a submanifold N ∼= B/G transversal to the G-orbits in B; and the

main problem is
(c) restrict the DO D : C∞(st ξ)→ C∞(st η) to N .

As pointed out in section 4, to perform step (c) in this algorithm, one needs
a fiber preserving mapping S : Jk(ξN) → Jk(ξ)N . In the case of dimensional
reduction of a G-invariant DO, there exists a natural splitting of the SES (8)
due to the possibility to extend uniquely by G-invariance each section of st ξN
to a section over a neighborhood of N . In the rest of this section, we explain
how this can be done.

The Lie derivative L : C∞(ξ) → C∞(g∗ ⊗ ξ) of the action (T, t) of the Lie
group G on the section ψ ∈ C∞(ξ) is defined by

Lψ(Y ) :=
d

dt
etY (ψ)

∣∣∣
t=0

=
d

dt
Texp(tY ) ◦ ψ ◦ texp(−tY )

∣∣∣
t=0

,
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where g∗ is the dual of the Lie algebra g of G, and Y ∈ g. The stationary
subbundle st ξ is invariant under the action of G on ξ, hence the Lie derivative
has a natural restriction to st ξ which will also be denoted by L.

Let
L̃ : J1(st ξ) −→ g∗ ⊗ st ξ

be the total symbol of the Lie derivative L ∈ LDiff1(st ξ, g∗⊗st ξ). The (k−1)st
prolongation of L provides a splitting relation for each G-invariant DO D ∈
Diffk(ξ, η)G. Indeed, let

P k−1(L̃) : Jk(st ξ) −→ ⊗Jk−1(g∗ ⊗ st ξ)

be the symbol of the (k − 1)st prolongation of L,

Rk
N := (kerP k−1(L̃))N ⊂ Jk(st ξ)N

be the restriction of its kernel to N , and ik and IkN have the same meaning as
in (8) (with st ξ instead of ξ). Then it can be shown that Rk

N defines a splitting
of (8), i.e., it is a complementary subbundle of ik(IkN) in Jk(st ξ)N :

Jk(st ξ)N = ik(IkN)⊗Rk
N .

This means that for each b ∈ N , all non-internal for N derivatives in Jk(ψ)(b)
can be expressed in terms of the purely internal derivatives by solving the
system

P k−1(L̃)N = 0 ,

thus providing us with an algorithm for restriction to N , and hence for di-
mensional reduction of each G-invariant DO of order k.

A very important for this algorithm fact is that the Lie derivative is a formally
integrable differential operator. Due to the formal integrability of L, in order to
reduce a G-invariant DO of order k, one does not need to consider P l(L̃)N = 0
for l > k − 1, so the above theory always yields an algorithm consisting of
finitely many steps. This, in particular, implies that in the process of reduction
of a G-invariant DO the order of the operator does not increase, i.e., if D ∈
Diffk(ξ, η)G, then DG ∈ Diffm (ξG, ηG), where m ≤ k.

Remark 5.1 The short exact sequence of vector bundles in the diagram (8)
admits different splittings. However, in the procedure of reduction of an invari-
ant DO, it is the requirement for G-invariance of the sections of ξ and η that
yields a unique splitting. This splitting determines the reduced DO.

In the proposed procedure for reduction, one needs only to calculate the prolon-
gation of the Lie derivatives and to solve algebraic equations. This is generally
easier than finding an ansatz for the invariant sections (to find such an ansatz,
one would have to solve a system of first order partial differential equations).
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In this “local” approach to dimensional reduction, one does not need to know
a global ansatz for the invariant sections, but only their Taylor expansion up
to order k around N (for DOs of order k).

Below we illustrate the method of dimensional reduction of invariant differen-
tial operators on simple examples. Notice how simple the calculations are (as
opposed to, say, change of variables), and the fact that, although the reduc-
ing group in the second example is non-compact, the reduction procedure is
essentially the same.

Example 5.1 As an example, let us consider the O0(3)-reduction ot the Laplace
operator acting on scalar functions in R3.

For a base of the reduced bundle let us choose the transversal to the orbits of
O0(3) manifold N := {(0, 0, z) | z > 0}.

The generators of O0(3) are

X1 := x∂y − y∂x , X2 := x∂z − z∂x , X3 := y∂z − z∂y .

The infinitesimal symmetry condition X2f = 0 implies ∂xf = x
z
∂zf . The

restriction to the submanifold N of the x-component of the first prolongation
of this condition yields ∂xxf = 1

z
∂zf on N . Similarly, the condition X3f = 0

gives ∂yyf = 1
z
∂zf on N . Plugging these equations in ∆ := ∂xx + ∂yy + ∂zz, we

obtain the reduced Laplace operator,

∆O0(3) =
d2

dz2
+

2

z

d

dz
,

acting on functions defined on N – as expected, for this choice of N , ∆O0(3)

is the radial part of the Laplacian.

Example 5.2 As an example of reduction with a non-compact reducing group
consider the O0(1, 2)-reduction of the (1 + 2)-dimensional D’Alembertian

�3 := ∂xx + ∂yy − ∂zz

in the interior of the “future” light cone. Let N := {(0, 0, z) | z > 0}.

The generators of O0(1, 2) are x∂y− y∂x, x∂z + z∂x, and y∂z + z∂y. The same
calculation as in the previous example yields ∂xxf = −1

z
∂zf , ∂yyf = − 1

x
∂zf

on N , so the reduced wave operator is

(�3)O0(1,2) = −
(
d2

dz2
+

2

z

d

dz

)
.

Note that the O0(3)-invariant harmonic functions satisfy the same equation
as the O0(1, 2)-invariant solutions of the wave equation.
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6 Dimensional Reduction of a Group Action

We need some details concerning the dimensional reduction of a group action.
Let ξ = (E, π,B) be a G-reducible vector bundle, the Lie group K act on ξ by
vector bundle morphisms (F, f), and the actions of G and K commute. Due
to the mutual commutativity of the actions (T, t) and (F, f) of G and K on ξ,
the action of k ∈ K maps the G-invariant sections of ξ into G-invariant ones
(i.e., C∞(ξ)G is a K-invariant subset of C∞(ξ)). This fact allows us to define
a natural action (FG, fG) of K on the reduced bundle ξG = (st ξN , πG, N) as
follows. Let k ∈ K, b ∈ N , σ ∈ (ξG)b = st ξb, and let g ∈ G is such that
tg ◦ fk(b) ∈ N , then

(tG)k(b) := tg ◦ fk(b) ,

(FG)k (σ) :=Tg ◦ Fk(σ) ∈ (ξG)(tG)k(b) .

The action kG of k ∈ K on C∞ (ξG) is

kG : C∞ (ξG) −→ C∞ (ξG) : S 7−→ kG(S) := θ−1 ◦ k ◦ θ ◦ S .

Induced representations are an example of dimensional reduction of a group
action.

Let ξ and η be G-reducible vector bundles over B with the same action t of G
on B. Let the Lie group K act on ξ and η by vector bundle morphisms with
the action f of K on B. Let the action (T ξ, t) of G on ξ commute with the
action (F ξ, f) of K on ξ, and the same be valid for the actions (T η, t) and
(F η, f) on η. It is easy to see that if a DO D ∈ Diffk(ξ, η) is simultaneously K-
and G-invariant, then the reduced DO DG ∈ Diffk (ξG, ηG) is invariant under
the reduced actions (F ξ

G, fG) and (F η
G, fG) of K on ξG and ηG.
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