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1 Introduction

The conformal group is one of the most important symmetry groups in physics.
It appears naturally in many physical problems, such as high-energy limit of
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quantum field theory equations [9], phase transitions [16,14], the geometry of
anti-de Sitter space [1], the problem of the electromagnetic field of a charged
particle moving with a constant relativistic acceleration [8], the geometry of
the classical Kepler problem [12]. In electrodynamics, the conformal invariance
of Maxwell’s equations in vacuum was noticed as early as in 1909 by Bateman
[2] and Cunningham [3].

The connected component C0(1, 3) of the 15-parameter conformal group in
Minkowski space M consists of the 10-parameter Poincaré group, the dilata-
tions x 7→ x′ = dx (d > 0) and the 4-parameter nonlinear continuous group of
special conformal transformations which are compositions of an inversion I, a
translation, and again an inversion:

x 7→ I(x) 7→ I(x)− a 7→ I(I(x)− a) =
x− |x|2a

1− 2a · x+ |a|2|x|2
. (1)

The presence of the nonlinear transformations (1) makes the problem of con-
structing conformally invariant fields and especially conformally invariant dif-
ferential operators very complicated.

In the present paper, we study the problem of constructing conformally in-
variant fields and differential operators in Minkowski space as well as gauge
transformations that preserve this invariance. We use the geometric construc-
tion of Dirac [4] in which the crucial fact is that C0(1, 3) is locally isomorphic
to O0(2, 4) – the connected component of the linear orthogonal group in the
space R6 endowed with a (−++++−) metric. In the Dirac’s construction, each
point in M is identified with an isotropic straight line in R6, i.e., Minkowski
space (more precisely, its conformal compactification M – see Sec. 2) is realized
as the projected light cone QP5 ⊂ R6. Because of this embedding of M into
R

6, the action of C0(1, 3) on M corresponds exactly to the action of O0(2, 4)
on the isotropic straight lines in R6. This is why, it is tempting to consider
the relation between the manifestly O0(2, 4)-invariant differential operators in
R

6 and the C0(1, 3)-invariant differential operators in M .

This relation, however, is not straightforward. The Dirac’s construction con-
sists of two steps, namely, projecting R6 onto RP5, followed by the restriction
of RP5 onto some realization of QP5. Both steps are (in general) not natural
for differential operators in the sense that, in order to perform them, one needs
some additional information.

To overcome these difficulties, we apply the methods developed in the first
part of this article [19] (which we will call Part I).

The plan of the article is the following. In Section 2 we describe Dirac’s con-
struction, in Section 3 we discuss the dimensional reduction of τ(R6) and
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τ ∗(R6), Sections 4 and 5 are devoted to the reduction of the 6-dimensional
Maxwell equations, and finally, in Section 6, we give a complete set of split-
ting relations for the Dirac’s construction.

2 General Description of the Dirac’s Construction

We start with the conformal compactification M := (S1×S3)/Z2 of Minkowski
space (for details see [21]). It is based on the Dirac’s construction [4] in
which the points of M are identified with the isotropic straight lines in the 6-
dimensional real space R6 with a diagonal metric tensor (ηmn) = diag(−1, 1, 1, 1, 1,−1).
Let Q6 be the light cone in R6 and R be the multiplicative group of nonzero
real numbers acting on R6 (here and elsewhere, R6 and Q6 stand for R6 \ {0}
and Q6 \ {0}, respectively). Therefore M is the projected light cone:

M ∼= QP5 := Q6/R .

Let (ξm) := (ξµ, ξ5, ξ6) (m,n, . . . = 0, 1, 2, 3, 5, 6; µ, ν, . . . = 0, 1, 2, 3) be the
canonical coordinates in R6. The isomorphism QP5 ∼= (S1×S3)/Z2 is evident
from

S1 × S3 = { ξ ∈ R6 | (ξ0)2 + (ξ6)2 = (ξ1)2 + (ξ2)2 + (ξ3)2 + (ξ5)2 = 1 } .

It is convenient to introduce in R6 coordinates adapted to the light cone Q6.
Following [17,10,7,13], we set

xµ:= ξµ

ξ5 + ξ6 ξµ = k xµ

k := ξ5 + ξ6 ξ5 = k
(

1− x2

2 + φ
)

φ := ξmξm
2(ξ5 + ξ6)2 ξ6 = k

(
1 + x2

2 + φ
)
,

where xµ := ηµνx
ν , ηµν := diag(−1, 1, 1, 1), x2 := xµxµ. The Jacobian is

∂(ξµ, ξ5, ξ6)

∂(xµ, k, φ)
= −k2 ,

hence this change of variables is nondegenerate outside the hyperplane k = 0.
The coordinates (xµ, k, φ) will be referred to as Q-coordinates (the equation
of the light cone Q6 in Q-coordinates is 2k2φ = 0), whereas (ξm) will be called
ξ-coordinates. We use the indices “−” for k, “+” for φ, and M,N, . . . for
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(µ,−,+), etc. In Q-coordinates the components of the metric tensor are

(gMN) :=


gµν gµ− gµ+

g−ν g−− g−+

g+ν g+− g++

 =


k2ηµν 0 0

0 2φ k

0 k 0


and the nonzero Christoffel symbols are Γµν− = 1

k
ηµν , Γ+

µν = −ηµν , Γ+
−+ = 1

k
.

The action of the group R on R6 in Q-coordinates is

ρ(xµ, k, φ) = (xµ, ρk, φ) ,

so as a chart of RP5 \ {k = 0} we use the hyperplane

U := {ξ ∈ R6 | k = 1} ∼= RP
5 \ {k = 0} , (2)

transversal to the R-orbits of the points of R6 \{k = 0}. The image of the line
[(xµ, k, φ)] through the point (xµ, k, φ), k 6= 0 (i.e., of the equivalence class of
this point with respect to the action of R) is the point (xµ, 1, φ) ∈ U .

The points of the conformal compactification M of Minkowski space are re-
alized as elements of the projected light cone QP5, i.e., as isotropic straight
lines in R6, and the points of Minkowski space M correspond to the isotropic
straight lines in R6 lying outside the hyperplane k = 0. We use the manifold

M := { ξ ∈ R6 | k = 1, φ = 0 } ∼= QP5 \ {k = 0} (3)

and the mapping

χ : QP5 \ {k = 0} −→M : [(xµ, k, φ)] 7−→ (xµ, 1, 0) =: (xµ)

as a chart of QP5 \ {k = 0}.

In the Dirac’s construction the isomorphism C0(1, 3) ∼= O0(2, 4)/Z2 is used in
the following way. The conformal transformations in M (in general nonlinear)
correspond to the natural action of the linear group O0(2, 4) on the straight
lines in R6. The 15 generators of O0(2, 4) in ξ-coordinates are

(Xmn)pq = ηmq η
p
n − ηnq ηpm , m < n ,

and the corresponding fundamental vector fields are

Xmn = (Xmn)pq ξ
q ∂

∂ξp
= ξm

∂

∂ξn
− ξn

∂

∂ξm
, m < n .
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The “physical fundamental vector fields” [20] are

Mµν := Xµν = xµ∂ν − xν∂µ , 0 ≤ µ < ν ≤ 3

Pµ := Xµ6 −Xµ5 = ∂µ

Kµ := −Xµ5 −Xµ6= 2xµ(x · ∂) + (2φ− x2)∂µ − 2kxµ∂− + 4φxµ∂+

D := −X56 = x · ∂ − k∂− − 2φ∂+ ,

where x · ∂ := xµ∂µ, etc.

The transformations exp(ωµνMµν) do not change k and φ and act on xµ as
Lorentz transformations, whereas the transformations generated by Pµ, Kµ

and D act as follows:

P (t) := exp(tµPµ) :


xµ

k

φ

 7−→

xµ + tµ

k

φ



K(c) := exp(cµKµ) :


xµ

k

φ

 7−→

p−1(c, x, φ) [xµ − cµ(x2 − 2φ)]

p(c, x, φ)k

p−2(c, x, φ)φ



D(d) := exp(dD) :


xµ

k

φ

 7−→

edxµ

e−dk

e2dφ

 ,

where p(c, x, φ) := 1− 2(c · x) + c2(x2 − 2φ).

With respect to their actions on xµ, the vector fields Mµν , Pµ and D generate
respectively Lorentz transformations, translations and dilatations; when φ =
0, i.e., on Q6, Kµ generate special conformal transformations. The physical
fundamental vector fields satisfy the well-known commutation relations of the
Lie algebra of C0(1, 3).
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3 Dimensional Reduction of τ(R6) and τ ∗(R6)

We define lifts of the action of R on R6 to actions T (λ) of R on τ(R6) by bundle
morphisms for every real number λ:

T (λ)
ρ (ξ, u) := (ρξ, ρλu) , (4)

where ξ ∈ R6, (ξ, u) ∈ τ(R6)ξ, ρ ∈ R. The number λ, specifying the action of

R on τ(R6), is usually called a conformal dimension of the fields. Since the
case λ = 1 corresponds to the tangent lift of the action of R, λ = 1 is called a
canonical conformal dimension. An R-invariant vector field X ∈ C∞(τ(R6))R
satisfies the equation

T (λ)
ρ X (ρ−1(ξ)) = X (ξ) . (5)

Let Xm, Am, Fmn, Jm be the components of the corresponding tensors in
ξ-coordinates and (XM) := (Xµ, X−, X+), etc. be their components in Q-
coordinates. In coordinate-free notation, we use X , A, F , J . Then (5) is
equivalent to Xm(ρξ) = ρλXm(ξ), which in Q-coordinates reads

Xµ,+(x, ρk, φ) = ρλ−1Xµ,+(x, k, φ)

X−(x, ρk, φ) = ρλX−(x, k, φ) .

The first step of the dimensional reduction of τ(R6) is the restriction of its
base to the light cone Q6, which is simultaneously O0(2, 4)- and R-invariant
submanifold of R6. As a result we obtain the O0(2, 4)- and R-intertwining SES

0 −−−→ τ(Q6)
m−−−→ τ(R6)Q6

n−−−→ ν(Q6) −−−→ 0 (6)

(cf. Eq. (7) in Part I). The subbundle m(τ(Q6)) ⊂ τ(R6)Q6 , consisting of the
vectors with components (Xµ, X−, 0) in Q-coordinates, is O0(2, 4)

R
-invariant.

The second step of the dimensional reduction is the R-reduction of the SES (6).
After this process, (6) converts into the O0(2, 4)

R
-, i.e., C0(1, 3)-intertwining

SES

0 −−−→ τ(Q6)R
m−−−→ (τ(R6)Q6)R

n−−−→ ν(Q6)R −−−→ 0 (7)

consisting of vector bundles over M (3). The action of R on Q6 is free, therefore
(7) is equivalent to the C0(1, 3)-intertwining SES

0 −−−→ τ(Q6)M
m−−−→ τ(R6)M

n−−−→ ν(Q6)M −−−→ 0 ,
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hence the subbundle m(τ(Q6)M) ⊂ τ(R6)M , consisting of all vectors of the
form (Xµ, X−, 0), is C0(1, 3)-invariant.

On the other hand, the R-reduction of τ(Q6) (the left term of (6)) gives the
O0(2, 4)-intertwining SES

0 −−−→ τv(Q6)R
q−−−→ τ(Q6)R

r−−−→ τ(M) −−−→ 0 ,

hence the subbundle q(τv(Q6)R) ⊂ τ(Q6)R, consisting of all vectors of the form
(0, X−), is O0(2, 4)

R
-invariant.

Therefore, we obtain the following filtration of C0(1, 3)-invariant bundles over
M :

m
(
q(τv(Q6)R)

)
⊂ m(τ(Q6)M) ⊂ τ(R6)M

or, in Q-coordinates,{
(0, X−, 0)

}
⊂

{
(Xµ, X−, 0)

}
⊂

{
(Xµ, X−, X+)

}
,

where {. . .} represents the form of the vectors in the corresponding subbundles.

In the case of the cotangent bundle τ ∗(R6), the lift (4) leads to

T (λ)
ρ (ξ, w) := (ρξ, ρ−λw) , (8)

where (ξ, w) ∈ τ ∗(R6)ξ. An R-invariant differential 1-form A ∈ C∞(τ ∗(R6))R
satisfies Am(ρξ) = ρ−λAm(ξ), which in Q-coordinates reads

Aµ,+(x, ρk, φ) = ρ1−λAµ,+(x, k, φ)

A−(x, ρk, φ) = ρ−λA−(x, k, φ) .

In Q-coordinates, the Lorentz transformations do not change A− and A+ and
act on Aµ in the usual way; the translations do not change any of the compo-
nents ofA; the actions of the special conformal transformations and dilatations
are given in Appendix B.

In the case of τ(Q6), we first perform R-dimensional reduction, which yields
the O0(2, 4)

R
-intertwining SES

0 ←−−− τv(R6)∗U
i∗←−−− τ ∗(R6)U

j∗←−−− τ ∗(U) ←−−− 0 (9)

of vector bundles over U . In the process of reduction, we have used that
the action of R on R6 is free, hence (τv(R6)∗)R = (τv(R6)R)∗ = τv(R6)∗U ,
τ ∗(R6)R = τ ∗(R6)U , and (p∗τ ∗(RP5))R = τ ∗(U).
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Restricting (9) to the O0(2, 4)
R
-invariant submanifold M ⊂ U , we obtain the

following C0(1, 3)-intertwining SES of vector bundles over M

0 ←−−− τv(R6)∗M
i∗←−−− τ ∗(R6)M

j∗←−−− τ ∗(U)M ←−−− 0 . (10)

On the other hand, the O0(2, 4)
R
-invariance of M as a submanifold of U gives

us the C0(1, 3)-intertwining SES

0 ←−−− τ ∗(M)
k∗←−−− τ ∗(U)M

l∗←−−− ν∗(M) ←−−− 0 , (11)

where k : τ(M)→ τ(U)M is the natural embedding and ν∗(M) := (τ(U)M/τ(M))∗

(cf. Eq. (7) in Part I)).

From (10) and (11), we obtain the following C0(1, 3)-invariant filtration of
vector bundles over M :

j∗(l∗(ν∗(M))) ⊂ j∗(τ ∗(U)M) ⊂ τ ∗(R6)M ,

or, in Q-coordinates,

{(0, 0, A+)} ⊂ {(Aµ, 0, A+)} ⊂ {(Aµ, A−, A+)} .

This allows us to impose the conformally invariant conditions

A− = 0 or Aµ = A− = 0 (12)

(which can be noticed from the transformation laws given in Appendix B).

4 Dimensional Reduction of the 6-Dimensional Maxwell Equations

Let A ∈ C∞(τ ∗(R6)) be the 6-dimensional electromagnetic vector potential,
J ∈ C∞(τ ∗(R6)) be the electromagnetic current density and

Fmn = (dA)mn =
∂An
∂ξm

− ∂Am
∂ξn

be the field strength tensor. Then the 6-dimensional Maxwell equations (6DME)
are

∂Fmn
∂ξm

= �6An −
∂

∂ξn
(∇6 · A) = Jn . (13)
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Note that since the homogeneous Maxwell equations dF = 0 are automatically
conformally invariant, we consider only the inhomogeneous ones and for the
sake of brevity we omit the adjective “inhomogeneous”.

In Q-coordinates, (13) read

∇NFNµ =
1

k2
∂νFνµ −

1

k
∂+Fµ− −

1

k
∂−Fµ+ +

2φ

k2
∂+Fµ+ = Jµ

∇NFN−=
1

k2
∂νFν− −

1

k
∂−F−+ +

2φ

k2
∂+F−+ −

3

k2
F−+ = J−

∇NFN+ =
1

k2
∂νFν+ +

1

k
∂+F−+ = J+ ,

or, in terms of vector potential,

∇NFNµ =
1

k2
�Aµ −

1

k2
∂µ(∂ · A) +

2

k
∂−∂+Aµ −

2φ

k2
∂+∂+Aµ

−1

k
∂µ∂+A− −

1

k
∂µ∂−A+ +

2φ

k2
∂µ∂+A+ = Jµ

∇NFN−=
1

k2
�A− −

1

k2
∂−(∂ · A) +

1

k
∂−∂+A− −

2φ

k2
∂+∂+A−

−1

k
∂−∂−A+ +

2φ

k2
∂−∂+A+ +

3

k2
∂+A− −

3

k2
∂−A+ = J−

∇NFN+ =
1

k2
�A+ −

1

k2
∂+(∂ · A)− 1

k
∂+∂+A− +

1

k
∂−∂+A+ = J+ ,

where �Aµ := ηρν∂ρ∂νAµ, ∂ · A := ηµν∂µAν .

Obviously, the 6DME are O0(2, 4)-invariant. They are also R-invariant in the
canonical case when A and J change respectively according to the actions
T (1) and T (3) of R.

We perform the R-reduction of 6DME, following the general procedure de-
scribed in Sec. 5 in Part I. From the vanishing of the Lie derivative of the
action (8) of R on the R-invariant differential 1-forms A ∈ C∞(τ ∗(R6))R, we
obtain

ξm
∂An
∂ξm

+ λAn = 0 .

In the case λ = 1 this equation reads

∂−Aµ,+(x, k, φ) = 0 ∂−A−(x, k, φ) =
1

k
A−(x, k, φ) . (14)
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We restrict the first prolongation of (14) to the submanifold U (2), transversal
to the R-orbits in R6, and obtain the splitting relations

∂−Aµ,+(x, φ) = 0 ∂−A−(x, φ) = −A−(x, φ)

∂−∂−Aµ,+(x, φ) = 0 ∂−∂−A−(x, φ) = 0 ,

where Aµ,−,+(x, φ) := Aµ,−,+(x, 1, φ).

With these relations, the R-reduced 6DME read

�Aµ − ∂µ(∂ · A)− 2φ ∂+∂+Aµ − ∂µ∂+A− + 2φ ∂µ∂+A+ = Jµ
�A− − 2φ ∂+∂+A− + 2 ∂+A− = J− (15)

�A+ − ∂+(∂ · A)− ∂+∂+A− = J+ .

The restriction to the submanifold M is complicated because after setting
φ = 0 in (15) we obtain the equations

�Aµ − ∂µ(∂ · A)− ∂µ∂+A− = Jµ
�A− + 2 ∂+A− = J− (16)

�A+ − ∂+(∂ · A)− ∂+∂+A− = J+

which contain ∂+ derivatives, i.e., the R-reduced 6DME are not internal for M .
To restrict the non-internal DO in (16) to M , we need some additional infor-
mation, e.g., a splitting relation for the SES (8) in Part I. Besides, we want
the restricted DO to be conformally invariant. Splitting relations of this kind
can be obtained by considering the kernel of a manifestly O0(2, 4)-invariant
DO after its R-reduction and restriction to M .

Let us choose as a splitting relation the manifestly O0(2, 4)-invariant equation

∇6 · A =
∂

∂ξm
Am = 0 . (17)

Its R-reduction reads

∂ · A(x, φ) + ∂+A−(x, φ)− 2φ ∂+A+(x, φ) + 2A+(x.φ) = 0 . (18)

The first prolongation of (18), restricted to M , yields

∂ · A+ ∂+A− + 2A+ = 0

∂µ(∂ · A) + ∂µ∂+A− + 2 ∂µA+ = 0 (19)

∂+(∂ · A) + ∂+∂+A− = 0 .

10



This is not a splitting of the SES (8) in Part I, but provides us with a suffi-
cient set of splitting relations for it. Combining (16) with (19), we obtain the
equations

�Aµ(x) + 2 ∂µA+(x) = Jµ(x)

�A−(x)− 2 ∂ · A(x)− 4A+(x) = J−(x) (20)

�A+(x) = J+(x) ,

often referred to as conformal electrodynamics equations [7,5].

Numerous modifications of (20), discussed in the literature, can be easily ob-
tained from them. For example, eliminating A+(x), we obtain

∂µFµν(x) +
1

2
∂ν�A−(x) = Jν(x) +

1

2
∂νJ−(x)

(21)
1

4
�2A−(x)− 1

2
�∂ · A(x) = J+(x)− 1

4
�J−(x) .

Some of the conformally invariant conditions (12) can be imposed indepen-
dently on A and J . For example, setting J−(x) = 0 in (21), we arrive at the
system [7,22,11]

∂µFµν(x) +
1

2
∂ν�A−(x) = Jν(x)

1

4
�2A−(x)− 1

2
�∂ · A(x) = J+(x) .

If, in addition, A−(x) = 0, we obtain the equations [18,5]

∂µFµν(x) = Jν(x)

−1

2
�∂ · A(x) = J+(x) .

5 Conformally Invariant Gauge Transformations

In this section, we derive the most general gauge transformations preserving
the conformal invariance. Let A′ = A+ dS be a gauge transformation in R6.
The R-invariance of A and A′ imposes the conditions

∂−∂µ,+S(x, k, φ) = 0
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∂−∂−S(x, k, φ) =− 1

k
∂−S(x, k, φ)

on S (cf. (14)). Their solution is

S(x, k, φ) = s ln |k|+ t(x, φ) , (22)

where s is a constant and t is an arbitrary function of x and φ. The dimensional
reduction of (22) yields

S(x, φ) :=S(x, 1, φ) = t(x, φ) ,
(23)

∂−S(x, φ) := ∂−S(x, k, φ)|k=1 = s .

The actions of K(c) and D(d) on S(x, k, φ) (22) are

D(d)(S)(x, k, φ) = s d+ S(e−dx, k, e−2dφ)

K(c)(S)(x, k, φ) = s ln |p(−c, x, φ)|+ S(′x, k,′ φ) ,

where ′xµ := p−1(−c, x, φ)[xµ + cµ(x2 − 2φ)], ′φ := p−2(−c, x, φ)φ. The in-
finitesimal form of these relations is

δS(x, k, φ) = d [s− (x · ∂ + 2φ ∂+)S(x, k, φ)]

δS(x, k, φ) = cµ
{

2sxµ +
[
(x2 − 2φ)∂µ − 2xµx · ∂ − 4φxµ∂+

]
S(x, k, φ)

}
.

After the R-reduction and restriction to M we obtain

D(d)(S)(x, k, φ) = s d+ S(e−dx) ≈ S(x) + d [s− x · ∂ S(x)]

K(c)(S)(x, k, φ) = s ln |p(−c, x)|+ S(′x)

≈S(x) + cµ
[
2sxµ + (x2∂µ − 2xµx · ∂)S(x)

]
,

where S(x) := S(x, 0), ′xµ := p(−c, x, 0)(xµ + cµx2).

The gauge transformations for the conformal electrodynamics equations (20)
must be compatible with the condition (17) used as a splitting relation for
obtaining (20). Therefore, the gauge function must satisfy the 6-dimensional
“wave equation” �6S = 0, which in Q-coordinates reads

1

k2
�S(x, k, φ) +

2

k
∂−∂+S(x, k, φ)− 2φ

k2
∂+∂+S(x, k, φ) +

2

k2
∂+S(x, k, φ) = 0 .
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After the R-reduction, we obtain for t(x, φ) the condition

�t(x, φ)− 2φ ∂+∂+t(x, φ) + 2 ∂+t(x, φ) = 0 ,

whose first prolongation, restricted to M , yields the relations

∂+t(x, 0) +
1

2
�t(x, 0) = 0 , (24)

∂+�t(x, 0) = 0 . (25)

Acting on (24) with � and taking into account (25), we obtain the internal
for M condition �2t(x) = 0, where t(x) := t(x, 0). Due to (23) and (24), the
conformally invariant “gauge transformations” in M are

A′µ(x) =Aµ(x) + ∂µS(x)

A′−(x) =A−(x) + s

A′+(x) =A+(x)− 1

2
�S(x) ,

where the gauge function S(x) is a solution to

�2S(x) = 0 (26)

[7,11,5]. It is easy to check that (26) is sufficient for the gauge invariance of
(20). If the conformally invariant condition A−(x) = 0 is imposed, the constant
s must be zero [15].

6 A Complete Set of Splitting Relations for the Dirac’s Construc-
tion

When one wants to obtain a conformally invariant DO in Minkowski space us-
ing the Dirac’s construction and starting from a manifestly O0(2, 4)-invariant
DO in R6, the restriction of this DO to the submanifold M (3) plays a cru-
cial role. To obtain a conformally invariant DO in M , one needs an O0(2, 4)-
invariant splitting relation. We shall show that a complete set of splitting
relations for noncanonical conformal dimensions can be obtained from the
prolongation of the 6-dimensional D’Alembertian �6.

Let us consider the equation

�6Am = 0 , (27)
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and let R act on C∞(τ ∗(R6)) according to (8). In Q-coordinates, (27) reads

1

k2
�Aµ +

2

k
∂−∂+Aµ −

2φ

k2
∂+∂+Aµ +

2

k2
∂µA+ = 0

1

k2
�A− +

2

k
∂−∂+A− −

2φ

k2
∂+∂+A− −

2

k3
(∂ · A) (28)

+
2

k2
∂+A− −

2

k2
∂−A+ +

4φ

k3
∂+A+ −

4

k3
A+ = 0

1

k2
�A+ +

2

k
∂−∂+A+ −

2φ

k2
∂+∂+A+ = 0 .

After R-reduction and restriction of (28) to M , we obtain

�Aµ(x) + 2(1− λ)∂+Aµ(x) + 2∂µA+(x) = 0

�A−(x) + 2∂ · A(x) + 2(1− λ)∂+A−(x) + 2(λ− 3)A+(x) = 0 (29)

�A+(x) + 2(1− λ)∂+A+(x) = 0 .

For the canonical conformal dimension λ = 1, the DO in the left-hand side
of (29) is internal for M . If λ 6= 1, (29) gives conformally invariant splitting
relations for first-order DOs on C∞(τ(R6)):

∂+Aµ(x) =
1

2(λ− 1)
[�Aµ(x) + 2∂µA+(x)]

∂+A−(x) =
1

2(λ− 1)
[�A−(x)− ∂ · A(x) + 2(λ− 3)A+(x)] (30)

∂+Aµ(x) =
1

2(λ− 1)
�A+(x) .

The first prolongation of (28) gives a complete set of conformally invariant
splitting relations for second-order DOs if λ 6= 0, 1:

∂+∂+Aµ(x) =
1

4(λ− 1)λ

[
�2Aµ(x) + 2∂µ�A+(x)

]
∂+∂+A−(x) =

1

4(λ− 1)λ

[
�2A−(x)− 4�∂ · A(x) + 4(λ− 3)�A+(x)

]
∂+∂+A+(x) =

1

4(λ− 1)λ
�2A+ .

The second prolongation of (28) gives a complete set of conformally invariant
splitting relations for third-order DOs if λ 6= −1, 0, 1:

14



∂+∂+∂+Aµ(x) =
1

8(λ− 1)λ(λ+ 1)

[
�3Aµ(x) + 4∂µ�

2A+(x) + 4λ∂µ�A+(x)
]

∂+∂+∂+A−(x) =
1

8(λ− 1)λ(λ+ 1)

[
�3A−(x)− 6�2∂ · A(x) + 6(λ− 3)�2A+(x)

]
∂+∂+∂+Aµ(x) =

1

8(λ− 1)λ(λ+ 1)
�3A+(x) .

In general, the (k − 1)st prolongation of (28), followed by a restriction to M ,
provides a complete set of conformally invariant splitting relations for DOs
of order k if λ 6= 2 − k, 3 − k, . . . , 1. In general, the order of the DOs in the
process of restriction increases.

As an example of application, we reduce the O0(2, 4)-invariant 6-current con-
servation law

∇6 · J = 0 ,

which in Q-coordinates reads

1

k2
∂ · J +

1

k
∂+J− −

1

k
∂−J+ −

2φ

k2
∂+J+ +

2

k2
J+ = 0 .

Performing R-reduction for the canonical for J conformal dimension λ = 3,
we have

∂ · J(x, φ) + ∂+J−(x, φ)− 2φ ∂+J+(x, φ) = 0 .

Applying (30) to this equation, we obtain the conformally invariant condition

∂ · J(x) +
1

2
�J−(x) = 0 (31)

[7,11,6,13], which can be regarded as a conservation law for Jµ(x) + 1
2
∂µJ−(x).

Calculating the divergence of the first equation of (21) and taking into account
(31), we have

�2A− = 0 . (32)

Combining (32) with (21), we get the one-parametric family

∂µFµν(x) +
1

2
∂ν�A−(x) = Jν(x) +

1

2
∂νJ−(x)

β�2A−(x)− 1

2
�∂ · A(x) = J+(x)− 1

4
�J−(x) .

The more popular current conservation law

∂ · J(x) = 0 ,
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valid for the conformal electrodynamics equations (20) with J−(x) = 0, can
be derived from (31) by imposing the conformally invariant condition J− = 0.
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A APPENDIX A

(We use the notations from Sec. 2 and work in Q-coordinates.)

The manifold Q6 is an O0(2, 4)-invariant submanifold of R6; the action of
O0(2, 4) on it satisfies condition A from Part I and its tangent and cotangent
lifts satisfy condition B from Part I. This yields the O0(2, 4)-intertwining SESs

0 −−−→ τ(Q6)
m−−−→ τ(R6)Q6

n−−−→ ν(Q6) −−−→ 0

0 ←−−− τ ∗(Q6)
m∗←−−− τ ∗(R6)Q6

n∗←−−− ν∗(Q6) ←−−− 0 ,

consisting of O0(2, 4)-reducible vector bundles over Q6.
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The fiber τ(Q6)b of τ(Q6) over b ∈ Q6, naturally embedded in τ(R6)b, consists
of the vectors annihilating on Q6 the differential form

d(ξmξ
m) = d(2k2φ) = 2k (2φ dk + k dφ) .

Therefore τ(Q6) is generated by the vector fields ∂µ and ∂−, and τ ∗(Q6) is
generated by the differential forms dxµ and dk (µ = 0, 1, 2, 3). From the above
SESs we obtain that

m(τ(Q6)) = {(Xµ, X−, 0)} and n∗(ν∗(Q6)) = {(Aµ, A−, 0)}

are O0(2, 4)-invariant subbundles of τ(R6)Q6 and τ ∗(R6)Q6 , respectively. The

action ofO0(2, 4) onQ6 is transitive and we choose the point y := (0, 0, 0, 0, 1, 0) ∈
Q6 for a realization of Q6/O0(2, 4). The action of O0(2, 4) on y is generated by
the vector field tµ∂µ−d∂−. Hence, the stationary group O0(2, 4)y of the point y
consists of the Lorentz transformations M(ω) := exp(ωµνMµν) and the special
conformal transformations K(c), and therefore is non compact. The actions
of M(ω) and K(c) on τ(Q6)y and τ ∗(Q6)y are

M(ω)

(
Xµ

X−

)
=

(
Mµ

ν(ω) 0

0 1

)(
Xν

X−

)
K(c)

(
Xµ

X−

)
=

(
δµν 0

−2cν 1

)(
Xν

X−

)
,

M(ω)

(
Aµ

A−

)
=

(
Mν

µ(−ω) 0

0 1

)(
Aν

A−

)
K(c)

(
Aµ

A−

)
=

(
δµν 2cµ

0 1

)(
Aν

A−

)
.

Therefore st τ(Q6)y consists of all vectors of the formX−(∂−)y whereas st τ ∗(Q6)y
consists of the zero 1-form only. Hence, performing an O0(2, 4)-reduction of
τ(Q6) and τ ∗(Q6), we obtain respectively the reduced bundles

τv(Q6)O0(2,4) = τ(Q6)O0(2,4)

and
(τv(Q6)∗)O0(2,4) = (τ ∗(Q6))O0(2,4) ,

which are not dual because

dim
(
τv(Q6)O0(2,4)

)∗
= dim

(
st τ(Q6)y

)∗
= 1 ,

whereas
dim

(
τv(Q6)∗

)
O0(2,4)

= dim st τ ∗(Q6)y = 0 .

B APPENDIX B – Actions of the Special Conformal Transforma-
tions and Dilatations on C∞(τ ∗(R6))

In many papers on the conformal electrodynamics the authors use slightly
different adapted to the light cone in R6 coordinates, and usually work only
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on the light cone Q6, so we present a collection of the basic formulae for the
action of the conformal group on the 1-forms in R6 for different conformal
dimensions λ.

1. Special conformal transformations:

a) finite transformations:

K(c)(A)µ(x, k, φ) = p−2[p(δνµ + 2xµc
ν)− 2(cµ + c2xµ)(xν + cν(x2 − 2φ))]Aν(

′x,′ k,′ φ)

+2k(cµ + c2xµ)A−(′x, pk, p−2φ)− 4φp−3(cµ + c2xµ)A+(′x, pk, p−2φ)

K(c)(A)−(x, k, φ) = pA−(′x, pk, p−2φ)

K(c)(A)+(x, k, φ) = 2p−2[c2(xν + cν(x2 − 2φ))− pcν ]Aν(′x, pk, p−2φ)

−2kc2A−(K(−c)(′x, pk, p−2φ) + p3(p+ 4φc2)A+(′x, pk, p−2φ) ,

where p := p(−c, x, φ), ′xµ := p−1[xµ − cµ(x2 − 2φ)]; after R-reduction and
restriction to M :

K(c)(A)µ(x) = p−1−λ[p(δνµ + 2xµc
ν)− 2(cµ + c2xµ)(xν + x2cν)]Aν(K(−c)x)

+2(cµ + c2xµ)A−(K(−c)x)

K(c)(A)−(x) = p1−λA−(K(−c)x)

K(c)(A)+(x) = 2p−1−λ[c2(xν + x2cν)− pcν ]Aν(K(−c)x)

−2p−λc2A−(K(−c)x) + p−1−λA+(K(−c)x) ,

where p := p(−c, x, 0), K(−c)xµ := p−1(xµ + x2cµ);

b) infinitesimal transformations:

δAµ(x, k, φ) = {[(x2 − 2φ)c · ∂ − 2c · x(x · ∂ + 1) + 2kc · x∂− − 4φc · x∂+]δνµ
+2(xµc

ν − cµxν)}Aν(x, k, φ) + 2kcµA−(x, k, φ)− 4φcµA+(x, k, φ)

δA−(x, k, φ) = [(x2 − 2φ)c · ∂ − 2c · x(x · ∂ − k∂− + 2φ∂+ − 1)]A−(x, k, φ)

δA+(x, k, φ) =−2cνAν(x, k, φ) + [(x2 − 2φ)c · ∂ − 2c · ∂(x · ∂ + 2)

+2kc · x∂− − 4φc · x∂+]A+(x, k, φ) ;

after R-reduction and restriction to M :

δAµ(x) = {[x2c · ∂ − 2c · x(x · ∂ + λ)]δνµ + 2(xµc
ν − cµxν)}Aν(x) + 2cµA−(x)

δA−(x) = [x2c · ∂ − 2c · x(x · ∂ + λ− 1)]A−(x, k, φ)

δA+(x) =−2cνAν(x) + [x2c · ∂ − 2c · ∂(x · ∂ + λ+ 1)]A+(x) .

2. Dilatations:
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a) finite transformations:

D(d)(A)µ(x, k, φ) = e−dAµ(e−dx, edk, e−2dφ)

D(d)(A)−(x, k, φ) = edA−(e−dx, edk, e−2dφ)

D(d)(A)+(x, k, φ) = e−2dA+(e−dx, edk, e−2dφ) ;

after R-reduction and restriction to M :

D(d)(A)µ(x) = e−λdAµ(e−dx)

D(d)(A)−(x) = e−(λ−1)dA−(e−dx)

D(d)(A)+(x) = e−(λ+1)dA+(e−dx) ;

b) infinitesimal transformations:

δAµ(x, k, φ) =−d (x · ∂ − k∂− + 2φ∂+ + 1)Aµ(x, k, φ)

δA−(x, k, φ) =−d (x · ∂ − k∂− + 2φ∂+ − 1)A−(x, k, φ)

δA+(x, k, φ) =−d (x · ∂ − k∂− + 2φ∂+ + 2)A+(x, k, φ) ;

after R-reduction and restriction to M :

δAµ(x) =−d (x · ∂ + λ)Aµ(x)

δA−(x) =−d (x · ∂ + λ− 1)A−(x)

δA+(x) =−d (x · ∂ + λ+ 1)A+(x) .
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