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Abstract. We prove the existence of a torus that is invariant with respect

to the flow of a vector field that preserves the presymplectic form in an exact
presymplectic manifold. The flow on this invariant torus is conjugate to a

linear flow on a torus with a Diophantine velocity vector. The proof has an

“a posteriori” format, the the invariant torus is constructed by using a Newton
method in a space of functions, starting from a torus that is approximately

invariant. The geometry of the problem plays a major role in the construction

by allowing us to construct a special adapted basis in which the equations
that need to be solved in each step of the iteration have a simple structure.

In contrast to the classical methods of proof, this method does not assume

that the system is close to integrable, and does not rely on using action-angle
variables.

1. Introduction4

The goal of this paper is to give a proof of the existence of a torus that is invariant5

with respect to the flow of a presymplectic vector field V in an exact presymplectic6

manifold (P,Ω), i.e., in a manifold P endowed with an exact constant-rank 2-form7

Ω that is preserved under the flow of V .8

Perhaps the most prominent occurrence of presymplectic manifolds in physics is9

in the geometric theory of dynamical systems with constraints. These are systems10

for which the transition from Lagrangian to Hamiltonian description is non-trivial11

because some of the relations pA := ∂L
∂q̇A

(q, q̇) expressing the generalized momenta12

pA in terms of generalized velocities q̇A cannot be solved for q̇A since the matrix13

( ∂2L
∂q̇A ∂q̇B

) is degenerate; the relations that cannot be solved play the role of con-14

straints. The modern theory of constrained systems was initiated in the early 1950s15

by Dirac [23, 24, 25] and developed by Bergmann and his collaborators for purposes16

of quantization of field theories [4, 44, 10] (the book [52] offers an in-depth exposi-17

tion). Such situations occur in also classical electromagnetic theory [53, Ch. V], in18

the description of relativistic particles [36], [53, Ch. VII], gauge fields [53, 38, 47].19

A geometric theory of constrained systems was proposed in the late 1970s by20

Gotay and collaborators [35, 34, 33]. In their approach, the system is transformed21

in stages, and the process ends up with a manifold that is typically presymplectic.22

Presymplectic geometry is also related to equivalence between Lagrangian and23

Hamiltonian formalisms for constrained systems [15, 8, 7], geometric approach to24

maximum principles [6], geometric optics [18, 17, 27], etc. Other topics of inter-25

est are canonical transformations in presymplectic systems [14, 16], reduction of26

presymplectic manifolds [22, 29, 28, 45, 2], etc.27
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A major achievement in the theory of Hamiltonian systems in the second half1

of the XX century was the celebrated Kolmogorov-Arnold-Moser (KAM) Theorem.2

This theorem is the subject of multiple reviews and pedagogical expositions (see,3

e.g., [41, 46, 51, 50, 19, 20, 5, 11]), and its history is beautifully described in the4

recent book by Dumas [26].5

The standard proofs of the KAM-type theorems perform an infinite sequence of6

canonical transformations to convert a slightly perturbed integrable system on a7

symplectic manifold into action-angle variables. González, Jorba, de la Llave and8

Villanueva developed a new method of proof in their seminal 2005 paper [21]. This9

method relies heavily on the geometry of the system. One important ingredient in10

their proof is the so-called automatic reducibility: if K is a torus in the symplectic11

manifolds P that is invariant with respect to a map f : P → P, then the tangent12

bundle to K is preserved under the derivative Tf . This simplifies the structure of13

the coefficient matrices in certain difference equations which, in turn, dramatically14

simplifies the solution of the problem.15

Methods similar to the ones developed in [21] have since been used in [32] to study16

the existence of non-twist tori in degenerate Hamiltonian systems, and in [30, 42] to17

prove the existence of lower dimensional invariant tori that are partially hyperbolic18

or elliptic. Since these methods are suitable for efficient numerical implementation,19

they have been used for this purpose in [12, 39, 13, 31]. Many aspects of these20

methods are considered in the recent book by Haro et al [37] (KAM theory is the21

subject of Chapter 4).22

Alishah and de la Llave [3] used the ideas of [21] to prove a KAM theorem23

for presymplectic systems, for which the degeneracy of the presymplectic form24

complicates the matters. They considered a family {fλ} of maps that preserve the25

presymplectic form, and found a value λ̄ of the parameter λ and an embedding26

K from a torus to the presymplectic manifold such that fλ̄ ◦ K = K ◦ Tω where27

Tω : θ 7→ θ + ω is translation on the torus by a Diophantine vector ω.28

The main goal of this paper is to prove a KAM theorem for a family {Vλ} of29

presymplectic vector fields on an exact presymplectic manifold (P,Ω), with dimP =30

d + 2n, dim ker Ω = d, Ω = dτ for some τ ∈ Ω1(P). For most of the paper we31

consider P ∼= Td × T ∗Tn ∼= Td+n × Rn, where ker Ω coincides with the first d32

dimensions. Our goal is to find a value λ̄ of the parameter λ ∈ Rd+2n and an33

embedding K : Td+n → P such that the submanifold K := K(Td+n) is invariant34

with respect to the flow Φλ̄,t of the vector field Vλ̄, and K conjugates Φλ̄,t to the35

linear flow φt : Td+n → Td+n : θ 7→ θ+ tω, where ω ∈ Rd is a constant Diophantine36

vector:37

Φλ̄,t ◦K = K ◦ φt , t ≥ 0 . (1.1)

The infinitesimal form of (1.1) is Vλ̄,K(θ) = K∗θ ωθ, where K∗θ : TθTd+n → TK(θ)P38

is the derivative of K at θ ∈ Td+n and we consider ω ∈ Rd+n as ωθ ∈ TθTd+n =39

Rd+n.40

Our proof of the theorem has an a posteriori format (as in [21]). In more41

detail, we assume the existence of λ0 and K0 : Td+n → P that satisfy (1.1) only42

approximately, i.e., Φλ0,t ◦K0 ≈ K0 ◦ φt. Then we start a version of the Newton43

method to construct iteratively a sequence of better and better approximations44

(λ0,K0) 7→ (λ1,K1) 7→ (λ2,K2) 7→ (λ3,K3) 7→ · · · (1.2)
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whose limit (λ∞,K∞) is the desired solution (λ̄,K) satisfying (1.1). The loss1

of domain accompanying each step of the iteration is compensated by the fast2

convergence of the Newton method. This method is convenient to implement in3

numerical computations. Moreover, a posteriori theorems are suitable for validation4

of numerical results, i.e., they can be used to produce computer assisted proofs of5

existence of invariant manifolds.6

In the paper we extensively use the geometry of the system to our advantage,7

inspired by the ideas of [21, 3]. If K = K(Td+n) is the invariant torus, then at8

each point k ∈ K the kernel ker Ωk of the presymplectic form is a subspace of TkK,9

so that we have ker Ωp ⊆ TkK ⊆ TkP. In fact, we have much more – a filtration10

of subbundles ker Ω ⊆ TK ⊆ TP|K which is invariant with respect to the flow11

Φλ̄,t of the vector field Vλ̄. This and the invariance (1.1) allow us to construct a12

special basis adapted to the filtration, in which the matrices of the operators have13

zero blocks. Even if the torus is only approximately invariant (as in the case of14

(λj ,Kj)), these blocks, albeit non-zero, are small and we have good bounds on their15

norms.16

An important role is also played by the fact that K is isotropic (i.e., that the the17

pull-back of Ω to K vanishes identically), and the approximately invariant tori are18

approximately isotropic. We found the following interesting quotations related to19

this fact. On page 45 of his classic 1973 monograph [43], Moser writes20

Actually, more than asserted in Theorem 2.7 can be proven. It turns21

out that the differential form
∑n
k=1 dyk ∧ dxk vanishes identically22

on the tori (3.11), and one calls manifolds with this property and23

of maximal dimension Lagrange manifolds.24

In this quotation, Theorem 2.7 is (as Moser calls it) the Kolmogorov-Arnold The-25

orem, and the tori (3.11) are the invariant tori whose existence is proved in the26

KAM theorem. On page 584 of their monumental book [1], Abraham and Marsden27

write28

Moser [1973a] states that the invariant tori are Lagrangian sub-29

manifolds [. . .]. This fact can probably be exploited, although to30

our knowledge it has not been.31

The fact that K is isotropic and of a maximum dimension (i.e., Lagrangian in the32

symplectic case) is crucial for the proofs in [21, 3] and in this paper.33

The paper is organized as follows. In Sections 2.1–2.5 we introduce some basic34

definitions and notations, discuss the integrability of the distribution ker Ω and con-35

struct the symplectic manifold P/ ker Ω. The main theorem is stated in Section 2.6.36

In Section 3 we study the geometric structures occurring when we know the true37

solution (λ̄,K) of the problem – we prove that K is isotropic (Section 3.1), give38

a detailed construction of the basis adapted to the filtration ker Ω ⊆ TK ⊆ TP|K39

(Section 3.2), and study the properties of the matrix of transition from a general40

basis of TP|K to the special adapted basis (Section 3.3).41

Section 4 is devoted to the properties of approximate solutions. Approximately42

isotropic tori are studied in Section 4.1. In Section 4.2 we derive an equation43

for the corrections εj and ∆j needed to obtain a better approximation λj+1 =44

λj + εj , Kj+1 = Kj + ∆j . We solve this equation in Section 4.3, relying heavily45

on the machinery developed in Section 3. Finally, in Section 5, we collect several46

lemmata that justify the applicability of the Newton method for performing the47

iteration (1.2).48
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2. Preliminaries and general setup1

In this section we set up the problem and state our main result.2

2.1. Presymplectic manifolds and vector fields.3

Definition 2.1. A presymplectic manifold is a pair (P,Ω), where P is a manifold4

of any (finite) dimension and Ω ∈ Ω2(P) is a closed 2-form with constant rank. If5

Ω is exact, i.e., if Ω = dτ for some τ ∈ Ω1(P), then we say that (P,Ω) is an exact6

presymplectic manifold.7

Throughout this paper, we will always assume that8

dimP = d+ 2n , rank Ω = 2n . (2.1)

Most of the time we will consider the specific exact presymplectic manifold9

P := Td × T ∗Tn ∼= Td × Tn × Rn (2.2)

with an exact presymplectic form Ω with ker Ω = Td. We assume that Td×T ∗Tn is10

endowed with an Euclidean structure, so that we can identify two-forms with linear11

operators and abstract tangent vectors with column vectors.12

In the definition below, X(P) stands for the vector fields on P, L is the Lie13

derivative, and ι is the interior product, i.e., the contraction with a vector field.14

Definition 2.2. Let V ∈ X(P) and Φt : P → P be the time-t flow of V . The vector15

field V is said to be presymplectic if Φ∗t Ω = Ω for all t ∈ R.16

Lemma 2.3. Let (P,Ω) be a presymplectic manifold, and V ∈ X(P). Then the17

following conditions are equivalent:18

(a) V is a presymplectic vector field;19

(b) the Lie derivative of the presymplectic form along V vanishes: LV Ω = 0;20

(c) the 1-form ιV Ω is closed.21

Proof. The equivalence of (a) and (b) comes directly from the definition of a Lie22

derivative, and the equivalence of (b) and (c) follows from Cartan’s magic formula23

and the closedness of Ω: 0 = LV Ω = ιV dΩ + d(ιV Ω) = d(ιV Ω). �24

2.2. Foliation induced by ker Ω. In this section we discuss some results about25

a general presymplectic manifold (P,Ω) (not necessarily (2.2)). For any p ∈ P,26

define27

ker Ωp := {Wp ∈ TpP | ιWpΩp = 0}
= {Wp ∈ TpP | Ωp(Wp, Up) = 0 ∀Up ∈ TpP} ⊆ TpP .

The subspaces ker Ωp form a differentiable distribution, ker Ω, of rank d. Define28

Xker Ω(P) := {W ∈ X(P) | ιWΩ = 0} = {W ∈ X(P) |Wp ∈ ker Ωp ∀ p ∈ P} .

Using the classical Frobenius Theorem (see, e.g., [48, Section 3.5], or, especially,29

[40, Appendix 3]) and the fact that Ω is closed, one can easily obtain30

Lemma 2.4. If Ω is presymplectic, the distribution ker Ω is integrable.31

Lemma 2.4 implies that P has a foliation with d-dimensional leaves such that32

the tangent space to the leaf through p ∈ P at p is ker Ωp. We make the additional33

assumption that the collection of leaves of the foliation forms a smooth manifold Q34

(for a discussion see, e.g., [40, Sec. 4.3.3 of Appendix 3]). Let πQ : P → Q be the35



KAM TORI FOR PRESYMPLECTIC VECTOR FIELDS 5

canonical projection taking each point p ∈ P to the leaf (πQ)−1(πQ(p)) through it.1

If πQ∗ : TP → TQ is the derivative of πQ, then kerπQ∗ = ker Ω. The lemma below2

(see [40, Section III.7]) states that Q carries a natural symplectic structure.3

Lemma 2.5. Let (P,Ω) be a presymplectic manifold such that ker Ω determines an4

integrable foliation of P whose leaves form a smooth manifold Q, and let πQ : P →5

Q be the canonical projection. Then there exists a unique symplectic form Ω̃ ∈6

Ω2(Q) on the manifold Q such that (πQ)∗Ω̃ = Ω.7

For the case (2.2) considered in this paper, Q ∼= T ∗Rn. It would be interesting8

to investigate the case when P has a more complicated structure than (2.2).9

2.3. Matrix representation of Ω and Ω̃. We consider the case when P has10

product structure (2.2), so ker Ωp ∼= Td for every p ∈ P and the collection of leaves,11

12

Q = P/ ker Ω = T ∗Tn , (2.3)

is a symplectic manifold with symplectic form Ω̃. Because of the assumed Euclidean13

structure on P, we can identify a 2-form on P with a linear operator. For any p ∈ P,14

let Jp : TpP → TpP be the linear operator corresponding to Ωp, defined by15

〈Up, JpWp〉Rd+2n := Ωp(Up,Wp) , Up,Wp ∈ TpP ∼= Rd+2n , (2.4)

where 〈·, ·〉Rd+2n is the Euclidean inner product on Rd+2n. Similarly, for any q ∈ Q,16

let J̃q : TqQ → TqQ be the linear operator corresponding to the symplectic form17

Ω̃q on TqQ at q ∈ Q: if 〈·, ·〉R2n is the Euclidean inner product on R2n, then18 〈
Ũq, J̃qW̃q

〉
R2n := Ω̃q

(
Ũq, W̃q

)
, Ũq, W̃q ∈ TqQ ∼= R2n . (2.5)

If we choose a basis for TpP ∼= Rd×R2n such that the first d vectors form a basis19

of Rd = Tp ker Ω, and the other 2n vectors form a basis of R2n ∼= TpT
∗Tn, then we20

can write Jp in a matrix form as21

Jp =

[
0 0

0 J̃πQ(p)

]
, J>p = −Jp , J̃ >q = −J̃q . (2.6)

Although Jp is not invertible, we define J−1
p as the Moore-Penrose pseudoinverse:22

J−1
p :=

[
0 0

0 J̃−1
πQ(p)

]
, so that Jp J

−1
p =

[
0 0

0 I2n

]
. (2.7)

2.4. Miscellaneous definitions and results.23

Definition 2.6. For γ > 0 and σ ≥ d+ n− 1, the set of all ω ∈ Rd+n satisfying24

|ω · k| ≥ γ

|k|σ
∀ k ∈ Zd+n \ {0} (2.8)

is called the set of Diophantine vectors and is denoted by D(γ, σ).25

For any ρ > 0, we define the torus “thickened” into the complex direction,26

Td+n
ρ := {θ ∈ Cd+n/Zd+n | |Im θα| ≤ ρ, α = 1, 2, . . . , d+ n} . (2.9)
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Let | | stand for the supremum norm on Rm or Cm (for any m). Given ρ > 0, we1

define the set of functions Wρ as follows:2

Wρ :=
{
K : Td+n

ρ → P | (a) K is real analytic on the interior of Td+n
ρ ,

(b) K is continuous on the boundary of Td+n
ρ ,

(c) K is periodic of period 1 in all arguments
}
.

(2.10)

Define ‖K‖ρ = supθ∈Td+nρ
|K(θ)|, so that (Wρ , ‖ ‖ρ) is a Banach space. For analytic3

functions g : B → C (where B ⊆ C), and any ` ∈ N, define the norms4

|g|C`,B := sup
0≤|k|≤`

sup
z∈B

∣∣Dkg(z)
∣∣ . (2.11)

Lemma 2.7. (Cauchy bound) For K ∈ Wρ and 0 < δ < ρ,5

‖DK‖ρ−δ ≤ Cδ
−1 ‖K‖ρ . (2.12)

Lemma 2.8. (Rüssmann [49]) Let ω =
[
ω1 ω2 · · · ωd+n

]> ∈ D(γ, σ) and let6

the function h : Td+n → P be analytic on Td+n
ρ and have zero average. Then for7

any 0 < δ < ρ, the differential equation ∂ωv = h, where ∂ω :=
∑d+n
α=1 ω

α ∂
∂θα is8

the directional derivative in the direction of ω, has a unique average-zero solution9

v : Td+n → P which is analytic in Td+n
ρ−δ . The solution v satisfies the estimate10

‖v‖ρ−δ < Cγ−1δ−σ ‖h‖ρ , (2.13)

where C is a constant depending only on d, n, and σ.11

2.5. General setup and matrix notations. Let {Vλ} be a (d + 2n)-parameter12

family of presymplectic vector fields on the exact presymplectic manifold (P,Ω).13

Our goal is to construct a smooth embedding14

K : Td+n → P (2.14)

such that K := K(Td+n) be invariant with respect to the flow Φλ̄,t of Vλ̄ for some15

value λ̄ and the flow Φλ̄,t on K be conjugate to the linear flow φt on Td+n:16

Φλ̄,t(K(θ)) = K(φt(θ)) ∀ t ∈ R , ∀ θ ∈ Td+n , (2.15)

where ω ∈ Rd+n is a constant Diophantine vector and φt : Td+n → Td+n : θ 7→17

θ + tω. (For elements of Td+n, e.g., θ + tω, we assume that we take the fractional18

part of each component.) Differentiate (2.15) with respect to t and set t = 0 to19

obtain20

Vλ̄,K(θ) = K∗θ ωθ ∀ θ ∈ Td+n . (2.16)

Here Vλ̄,K(θ) ∈ TK(θ)K ⊆ TK(θ)P is the value of Vλ̄ at K(θ) ∈ K, ωθ ∈ TθTd+n
21

is the Diophantine vector ω considered as an element of TθTd+n = Rd+n, and22

K∗θ : TθTd+n → TK(θ)K ⊆ TK(θ)P is the derivative of K at θ.23

Instead of the differential-geometric notations used in (2.16), we will normally24

use matrix notations. In these notations (2.16) reads25

Vλ̄,K(θ) = DKθ ω or Vλ̄,K(θ) = ∂ωKθ , (2.17)

where ω is considered as a constant column vector, ∂ω := ω · ∇, and26

DKθ :=
[
(DKθ)

A
α

]
=

[
∂KA

∂θα
(θ)

]
∈ Md+2n,d+n(R) .

Throughout the paper we will systematically use the notations collected in Table 1.27
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Coordinates Range of indices Description

x =
(
xA
)

A,B = 1, 2, . . . , d+ 2n Coordinates in P ∼= Td × T ∗Tn

x = (xµ) µ, ν = 1, 2, . . . , d Coordinates in Td (the first d in P)

x̃ =
(
x̃i
)

i, j = 1, 2, . . . , 2n Coordinates in T ∗Tn (the last 2n in P)

θ = (θα) α, β = 1, 2, . . . , d+ n Coordinates in Td+n

Table 1. Notations for indices and coordinates.

2.6. Statement of the main theorem. Here we state our1

Main Theorem. Assume that:2

1) ω ∈ D(γ, σ) is a Diophantine vector;3

2) P = Td × T ∗Tn;4

3) Ω is an exact presymplectic form on P of rank 2n such that the kernel of Ω5

coincides with the first d directions;6

4) {Vλ} is a (d+2n)-parameter family of analytic presymplectic vector fields on P;7

5) K0 : Td+n → P is an embedding belonging to the class Wρ0 (2.10);8

6) the value λ0 of the parameter λ is such that the pair (λ0,K0) is non-degenerate9

in the sense of Definition 4.7;10

7) each vector field from the family {Vλ} can be holomorphically extended to some11

complex neighborhood Br of K0(Td+n
ρ ), where12

Br :=
{
z ∈ Cd+2n | ∃θ ∈ Td+n

ρ0 such that |z −K0(θ)| < r
}
, (2.18)

for some r > 0 and such that |Vλ|C2,Br is finite.13

Define the error function as e0,θ := Vλ,K0(θ)−∂ωK0,θ. Then there exists a constant14

c > 0 which depends on d, n, σ, ρ0, ‖DK0‖ρ0 , r, |Vλ|C2,Br ,
∥∥∥ ∂Vλ∂λ ∣∣λ=λ0

◦K0

∥∥∥
ρ0

,15

and
∣∣{avg (Λ0)}−1∣∣ (see (4.32)), such that if 0 < δ0 < max

{
1, ρ012

}
and the error e016

satisfies17

‖e0‖ρ0 ≤ min
{
γ4δ4σ

0 , crγ2δ2σ
0 ‖e0‖ρ0

}
,

then there exists a mapping K ∈ Wρ0−6δ0 and a vector λ̄ ∈ Rd+2n such that (2.16)18

(or, equivalently, (2.17)) is satisfied. Moreover, the following inequalities hold:19

‖K −K0‖ρ0−6δ0
<

1

c
γ2δ−2σ

0 ‖e0‖ρ0 ,
∣∣λ̄− λ0

∣∣ < 1

c
γ2δ−2σ

0 ‖e0‖ρ0 .

3. True solutions20

In this section we will assume that we know the exact solution of the problem21

and will use the geometry of the problem in order to construct bases of TK with22

special properties that will be utilized in Section 4.23

3.1. Invariant tori are isotropic.24

Definition 3.1. Let {Vλ} be a (d + 2n)-parameter family of presymplectic vector25

fields on the exact presymplectic manifold (P,Ω), and ω ∈ Rd+n be a Diophantine26

vector. If for some value λ̄ of λ there exists an embedding K : Td+n → P such that27

(2.17) holds, we call K and K an invariant torus ( KAM torus) or a true solution.28
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Remark 1. This terminology is somewhat of a misnomer. We require more than1

K being merely invariant under the flow of Vλ̄ – we want that the motion on K2

be quasi-periodic, (i.e., we require that the dynamics on K be conjugate to a linear3

flow on Td+n with frequency ω independent over the rationals).4

Notational convention. In Section 3 we assume that λ = λ̄, and set V := Vλ̄.5

Definition 3.2. An invariant (in the sense of Definition 3.1) torus, K = K(Td+n),6

in the presymplectic manifold (P,Ω) is said to be isotropic if the pull-back, K∗Ω ∈7

Ω2(Td+n), of Ω ∈ Ω2(P) to the torus Td+n vanishes identically.8

In Lemma 3.3 below we will prove that an invariant torus is isotropic. Similar9

results for maps are well-known for the case of submanifolds invariant with respect10

to symplectic or presymplectic maps (see, e.g., [21, Section 4, Lemma 1] or [3,11

Lemma 2.5]). This fact is crucial in the proof of Lemma 4.2 which, in turn, is12

essential for the bounds needed to solve the linearized equation in Section 4.3.13

We introduce the linear operator Lθ : TθTd+n → TθTd+n as the matrix repre-14

sentation of the pull-back (K∗Ω)θ: for Uθ,Wθ ∈ TθTd+n,15

〈Uθ, LθWθ〉Rd+n := (K∗Ω)θ (Uθ,Wθ) = ΩK(θ) (K∗θ Uθ,K∗θWθ) . (3.1)

The explicit expression for the matrix elements of Lθ is16

Lθ = DK>θ JK(θ)DKθ ∈ Md+n,d+n(R) . (3.2)

Lemma 3.3. Let (P,Ω) be an exact presymplectic manifold, V ∈ X(P) be presym-17

plectic, and K : Td+n → P be a true solution. Then the invariant torus K =18

K(Td+n) is isotropic (i.e., K∗Ω and, hence, Lθ, vanish identically).19

Proof. We prove the lemma in two steps: first we use the exactness of Ω to show20

that the average (over Td+n) of each matrix element of L is zero, and then we21

use the ergodicity of the flow θ 7→ θ + tω on Td+n to demonstrate that K∗Ω and,22

therefore, L, are constant on Td+n.23

Since the presymplectic form Ω is exact, there exists a 1-form τ ∈ Ω1(P) such24

that Ω = dτ , hence K∗Ω = K∗(dτ) = d(K∗τ). If25

τK(θ) =

d+2n∑
A=1

τA(K(θ)) dxA ,

then the pull-back K∗τ ∈ Ω1(Td+n) is given by26

(K∗τ)θ =

d+n∑
α=1

Cα(θ) dθα , Cα(θ) :=

d+2n∑
A=1

τA(K(θ))
∂KA

∂θα
(θ) ,

and the matrix representation of (K∗Ω)θ is (Lθ)
α
β =

∂Cα
∂θβ

(θ)− ∂Cβ
∂θα

(θ). Because27

of the periodicity of the functions Cα : Td+n → R,28

avg

(
∂Cα
∂θβ

)
:=

∫
Td+n

∂Cα
∂θβ

(θ) dθ1 dθ2 · · · dθd+n

=

∫
Td+n−1

(∫
T1

∂Cα
∂θβ

(θ) dθβ
)

dθ1 · · · d̂θβ · · · dθd+n = 0

(3.3)

(the term d̂θβ is missing), so avg (L) = 0 and, hence, avg (K∗Ω) = 0.29
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Now we will prove that L and K∗Ω are constant on Td+n. Restrict the target1

space of the mapK (2.14) from P to the image K ofK, to obtain the diffeomorphism2

Kr := K|Td+n→K : Td+n → K. Since K is invariant with respect to the flow of3

V ∈ X(P), at each k ∈ K, Vk ∈ TkK. Therefore, the restriction V |K of V to4

K can be considered as a vector field on K: V |K ∈ X(K). For the same reason,5

the Lie derivative with respect to V has a natural restriction to sections of any6

tensor power of the tangent and cotangent bundles of K. The pull-back of V |K7

by the diffeomorphism Kr is K∗r V :=
(
K−1

r

)
∗ (V |K) ∈ X(Rd+n). If we consider8

the constant ω ∈ Rd+n as a tangent vector ωθ ∈ Tθ(Td+n), then the pull-back of9

VK(θ) = K∗θ ωθ ∈ TK(θ)K is10

(K∗r V )θ =
(
K−1

r

)
∗K(θ)

K∗θ ωθ =
(
K−1

r ◦K
)
∗θ ωθ = ωθ .

By a well-known property of the Lie derivative, K∗LV Ω = LK∗r VK
∗Ω = LωK∗Ω11

(where all objects and operations are restricted to K). Since V is presymplectic,12

LV Ω = 0, which implies that its pull-back K∗Ω to Td+n is constant on the orbits13

of the flow θ 7→ θ + tω, t ∈ R. But ω is Diophantine, hence this flow is ergodic14

on Td+n, therefore K∗Ω = const and L = const. This together with the fact that15

avg (L) = 0 and avg (K∗Ω) = 0 implies the desired result. �16

3.2. Construction and properties of an adapted basis of TK(θ)P. In this17

section we construct a basis of (TP)|K that is adapted to the invariant (with respect18

to the flow of the presymplectic vector field V ) filtration (ker Ω)|K ⊆ TK ⊆ (TP)|K19

of vector bundles over K.20

3.2.1. Adapted coordinates in Td+n and a basis of TK(θ)K. We first construct a basis21

of TK(θ)K (at an arbitrary point K(θ) ∈ K) as a push-forward
{
K∗θ

(
∂
∂θα

)
θ

}d+n

α=1
of22

the basis
{(

∂
∂θα

)
θ

}d+n

α=1
of TθTd+n.23

Every vector in TK(θ)K has the form K∗θ Uθ for some Uθ ∈ TθTd+n. The com-24

ponents (K∗θ Uθ)
A of K∗θ Uθ in the basis

{(
∂
∂xA

)
K(θ)

}d+2n

A=1
are related to the com-25

ponents Uαθ of Uθ in the basis
{(

∂
∂θα

)
θ

}d+n

α=1
by26

(K∗θ Uθ)
A =

d+n∑
α=1

∂KA

∂θα
(θ)Uαθ . (3.4)

If we think of (K∗θ Uθ)
A as a column vectorK∗θUθ =

[
(K∗θUθ)

1 · · · (K∗θUθ)
d+2n

]>
27

and of the (d+ n) columns of the matrix28

DKθ =

[
∂KA

∂θα
(θ)

]
=

[
∂K

∂θ1
(θ) · · · ∂K

∂θd+n
(θ)

]
∈ Md+2n,d+n(R) , (3.5)

as (d + 2n)-dimensional vectors, then we can interpret (3.4) as expressing the ar-29

bitrary vector K∗θ Uθ ∈ TK(θ)K as a linear combination of ∂K
∂θ1 (θ), . . ., ∂K

∂θd+n
(θ).30

Therefore, the column vectors
{
∂K
∂θα (θ)

}d+n

α=1
form a basis of TK(θ)K.31

To adapt the basis
{
∂K
∂θα (θ)

}d+n

α=1
to the special subspace ker ΩK(θ) ⊆ TK(θ)K,32

recall that the first d coordinates in P = Td × T ∗Tn (2.2) correspond to ker Ω.33

Because of this, we reorder the coordinates θα, α = 1, . . . , d+ n, of Td+n in such a34

way that the d× d block in the upper left corner of DKθ (3.5) has full rank (then35

the 2n× n block in the lower right corner of DKθ will also be of full rank). Then36
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∂K
∂θµ (θ)

}d
µ=1

is a basis of ker ΩK(θ), while the vectors ∂K
∂θd+1 (θ), . . . , ∂K

∂θd+n
(θ) span1

an n-dimensional subspace that is transversal to ker ΩK(θ) in TK(θ)K.2

Define the matrices Zθ ∈ Md+2n,d(R) and Xθ ∈ Md+2n,n(R) as the first d,3

respectively the last n, columns of DKθ (3.5), so that DKθ = [Zθ Xθ]. Recall the4

notations from Table 1 for the coordinates x =
(
xA
)

=
(
x, x̃

)
, in P (2.2):5

x = (xµ) =
(
x1, . . . xd

)
, x̃ = (x̃i) =

(
x̃ 1, . . . , x̃ 2n

)
=
(
xd+1, . . . xd+2n

)
.

We will use these notations in matrices with d + 2n rows – the underscore for the6

first d rows, and the tilde for the remaining 2n rows:7

Zθ =

[
Zθ

Z̃θ

]
, Xθ =

[
Xθ

X̃θ

]
, DKθ = [Zθ Xθ] =

[
Zθ Xθ

Z̃θ X̃θ

]
. (3.6)

3.2.2. Adapted basis of TK(θ)P. Having constructed a basis of TK(θ)K, we need n
more vectors that span the complement of TK(θ)K in TK(θ)P. We will construct

them in such a way that, together with the columns ∂K
∂θd+1 (θ), . . ., ∂K

∂θd+n
(θ) of Xθ,

they form a symplectic basis of TK(θ)Q (2.3). To this end we will use the matrix

representation J̃K(θ) (2.5) of the symplectic form Ω̃ on Q, as well as the Gramian

matrix of the vectors ∂K
∂θd+1 (θ), . . . , ∂K

∂θd+n
(θ), i.e., the matrix X>θ Xθ ∈ Mn,n(R) of

their inner products with respect to the Euclidean inner product on T ∗Tn. Define

Rθ :=
(
X̃>θ X̃θ

)−1 ∈ Mn,n(R) , (3.7)

Ỹθ := J̃−1
K(θ) X̃θ Rθ ∈ M2n,n(R) , (3.8)

Yθ :=

[
0

Ỹθ

]
=

[
0

J̃−1
K(θ) X̃θ Rθ

]
∈ Md+2n,n(R) . (3.9)

Since J̃−1
K(θ), X̃θ, and Rθ are of maximal rank, Ỹθ and Yθ are of maximal rank:8

rank Ỹθ = rankYθ = n. We think of the n columns of Yθ as of as vectors in TK(θ)P.9

Let Zθ,µ, Xθ,a, Yθ,a, with µ = 1, . . . , d, a = 1, . . . , n, stand for the columns of10

Zθ, Xθ, and Yθ. These d+ 2n vectors are a basis of TK(θ)P with the properties11

span {Zθ,µ}dµ=1 = ker ΩK(θ) ,

span
{{
Zθ,µ

}d
µ=1

,
{
Xθ,a

}n
a=1

}
= TK(θ)K .

The first property implies that ΩK(θ) (Zθ,µ, · ) = 0. The construction of Yθ,a yields12

(using (2.4), (2.5), (2.6), (3.7), (3.8), and (3.9))13

ΩK(θ)

(
Xθ,a, Yθ,b

)
=
〈
Xθ,a, JK(θ)Yθ,b

〉
Rd+2n = X>θ,aJK(θ)Yθ,b =

(
X>θ JK(θ)Yθ

)
ab

=

([
X>θ X̃>θ

] [ 0

X̃θRθ

])
ab

=
(
X̃>θ X̃θRθ

)
ab

= (In)ab = δab

(In = (δab) is the unit n × n matrix), hence the vectors Xθ,a and Yθ,b form a14

symplectic basis of TK(θ)Q ∼= (TK(θ)P)/ ker ΩK(θ). We write this symbolically as15

ΩK(θ) (Xθ, Yθ) = X>θ JK(θ)Yθ = X̃>θ J̃K(θ)Ỹθ = In . (3.10)
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Below we summarize the properties of the basis of TK(θ)P constructed above,1

using matrix notations as in (3.10):2

Z>θ JK(θ)Zθ = Z̃>θ J̃K(θ)Z̃θ = 0 ,

Z>θ JK(θ)Xθ = Z̃>θ J̃K(θ)X̃θ = 0 ,

Z>θ JK(θ)Yθ = Z̃>θ J̃K(θ)Ỹθ = Z̃>θ X̃θRθ ,

X>θ JK(θ)Xθ = X̃>θ J̃K(θ)X̃θ = 0 ,

X>θ JK(θ)Yθ = X̃>θ J̃K(θ)Ỹθ = In ,

Y >θ JK(θ)Yθ = Ỹ >θ J̃K(θ)Ỹθ = −RθX̃>θ J̃−1
K(θ)X̃θRθ .

(3.11)

3.2.3. Presymplecticity of V at K in adapted coordinates. If U, V,W ∈ X(P) with3

V presymplectic, i.e., LV Ω = 0 (recall Lemma 2.3), then4

0 = (LV Ω)(U,W ) = LV
(
Ω(U,W )

)
− Ω (LV U,W )− Ω (U,LVW )

=

d+2n∑
A,B,C=1

UA
(
∂ΩAB
∂xC

V C +
∂V C

∂xA
ΩCB + ΩAC

∂V C

∂xB

)
WB

=

d+2n∑
A,B=1

UA

(
(DJ)V + (DV )> J + J DV

)A
BW

B ,

where we used the operator J =
(
JAB

)
(2.4), lowering an index of a vector signifies5

transposition (i.e., contraction with the Euclidean metric tensor), and6

(DV )CB =
∂V C

∂xB
,

(
(DJ)V

)A
B :=

d+2n∑
C=1

∂JAB
∂xC

V C .

Therefore in matrix notations the presymplecticity condition reads7

(DJ)V + (DV )> J + J DV = 0 . (3.12)

Writing the derivative of V at K(θ) ∈ K as8

DVK(θ) =:

 ∂V
∂x

∂V
∂x̃

∂Ṽ
∂x

∂Ṽ
∂x̃


K(θ)

, (3.13)

we can easily show that (3.12) is equivalent to the conditions9 [
∂Ṽ
∂x

]
K(θ)

= 0 , (DJ̃)K(θ)VK(θ) +
[
∂Ṽ
∂x̃

]>
K(θ)

J̃K(θ) + J̃K(θ)

[
∂Ṽ
∂x̃

]
K(θ)

= 0 . (3.14)

3.3. Change of basis matrix Mθ.10

3.3.1. Definition of Mθ. The adapted basis {Zθ,µ}dµ=1, {Xθ,a}na=1, {Yθ,a}na=1 of11

TK(θ)P constructed in Section 3.2 has properties that are very useful for our anal-12

ysis. Given an arbitrary column vector Uθ, considered as an element of TK(θ)P, we13

can find its components in the adapted basis as follows. Define the change of basis14

matrix Mθ of all vectors from the adapted basis, written as column vectors:15

Mθ := [DKθ Yθ] = [Zθ Xθ Yθ] =

[
Zθ Xθ 0

Z̃θ X̃θ Ỹθ

]
∈ Md+2n,d+2n(R) . (3.15)
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Then the vector Uθ can be written as a superposition of the vectors from the adapted1

basis as follows:2

Uθ = Mθ ξθ =

d∑
µ=1

Zθ,µ ξ
µ
θ +

n∑
a=1

Xθ,a ξ
d+a
θ +

n∑
a=1

Yθ,a ξ
d+n+a
θ . (3.16)

In the adapted basis, if we write the (d+ 2n) components of the vector ξθ as three3

blocks of length d, n, and n, as in (3.16), then the vectors from TK(θ)K have the4

form ξθ = [∗ ∗ 0]
>

, where the stars represent numbers that are generally non-zero.5

3.3.2. Computing (DVK(θ) − ∂ω)Mθ. In this section we will perform some compu-6

tations related to the change of basis matrix Mθ (3.15), which will be needed in7

Section 4. Differentiating the invariance condition (2.17), we obtain8

DVK(θ)DKθ = ∂ωDKθ . (3.17)

This, together with the definition (3.15) of Mθ, gives us9

(DVK(θ) − ∂ω)Mθ = (DVK(θ) − ∂ω)
[
DKθ Yθ

]
=
[

0 0 (DVK(θ) − ∂ω)Yθ
]
,

Our first goal is to find an explicit expression for (DVK(θ) − ∂ω)Yθ. To this end we10

have to compute11

(DVK(θ) − ∂ω)Yθ =


[
∂V
∂x̃

]
K(θ)

Ỹθ[
∂Ṽ
∂x̃

]
K(θ)

Ỹθ − ∂ωỸθ

 .

By the Leibniz rule,12

∂ωỸθ = ∂ω
(
J̃−1
K(θ)X̃θRθ

)
= ∂ω

(
J̃−1
K(θ)

)
X̃θRθ + J̃−1

K(θ)∂ω
(
X̃θ

)
Rθ + J̃−1

K(θ)X̃θ∂ωRθ .

The elementary identity 0 = ∂ω
(
I2n
)

= ∂ω
(
J̃−1
K(θ)J̃K(θ)

)
, the invariance (2.17), and13

the presymplecticity condition (3.14) yield14

∂ω
(
J̃−1
K(θ)

)
= −J̃−1

K(θ) ∂ω
(
J̃K(θ)

)
J̃−1
K(θ) = −J̃−1

K(θ) (DJ̃)K(θ) (∂ωKθ) J̃
−1
K(θ)

= −
(
J̃−1 (DJ̃)V J̃−1

)
K(θ)

= −
(
J̃
[
∂Ṽ
∂x̃

]
+
[
∂Ṽ
∂x̃

]>
J̃
)
K(θ)

.
(3.18)

The invariance (3.17) and the expressions (3.13) and (3.14) give us15

∂ωX̃θ =
[
∂Ṽ
∂x̃

]
K(θ)

X̃θ . (3.19)

From the definition (3.7) of Rθ, the expression (3.19) for ∂ωX̃θ, we easily obtain16

∂ωRθ = −2RθX̃
>
θ

[
∂Ṽ
∂x̃

]sym

K(θ)
X̃θRθ . (3.20)

where
[
∂Ṽ
∂x̃

]sym

K(θ)
:= 1

2

([
∂Ṽ
∂x̃

]
K(θ)

+
[
∂Ṽ
∂x̃

]>
K(θ)

)
.17

It will be convenient to introduce the operator18

Π̃θ := I2n − X̃θRθX̃
>
θ : R2n → R2n . (3.21)

We collect some properties of Π̃θ and J̃−1
K(θ)Π̃θJ̃K(θ) = I2n − ỸθX̃

>
θ J̃K(θ) which19

follow easily from (3.7), (3.8), and (3.11):20

• Π̃θ is symmetric;21

• both Π̃θ and J̃−1
K(θ)Π̃θJ̃K(θ) are idempotent;22
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• the n columns of the matrix X̃θ are in the kernel of Π̃θ;1

• the n columns of X̃θ are eigenvectors of J̃−1
K(θ)Π̃θJ̃K(θ) with eigenvalue 1,2

while the n columns of Ỹθ are in the kernel of J̃−1
K(θ)Π̃θJ̃K(θ):3

J̃−1
K(θ)Π̃θJ̃K(θ) X̃θ = X̃θ , J̃−1

K(θ)Π̃θJ̃K(θ) Ỹθ = 0 , (3.22)

hence J̃−1
K(θ)Π̃θJ̃K(θ) and

(
I2n − J̃−1

K(θ)Π̃θJ̃K(θ)

)
are projection operators4

corresponding to the splitting5

TK(θ)Q = span
{
X̃θ,a

}n
a=1
⊕ span

{
Ỹθ,a

}n
a=1

.

Putting together (3.18), (3.19), and (3.20), and using the definition (3.21), we6

obtain7

∂ωỸθ =
[
∂Ṽ
∂x̃

]
K(θ)

Ỹθ + 2J̃−1
K(θ)Π̃θ

[
∂Ṽ
∂x̃

]sym

K(θ)
X̃θRθ (3.23)

so, finally,8

(
DVK(θ) − ∂ω

)
Mθ =

 0 0
[
∂V
∂x̃

]
K(θ)

Ỹθ

0 0 −2J̃−1
K(θ)Π̃θ

[
∂Ṽ
∂x̃

]sym

K(θ)
X̃θRθ

 . (3.24)

3.3.3. Writing (DVK(θ) − ∂ω)Mθ as MθCθ. Having computed (DVK(θ) − ∂ω)Mθ,9

we will rewrite it in a form that plays a crucial role in Section 4:10

(DVK(θ) − ∂ω)Mθ = MθCθ := Mθ

 0 0 Tθ
0 0 Sθ
0 0 Uθ

 . (3.25)

Substitute (3.24) and (3.15) in (3.25) to obtain that Tθ, Sθ, and Uθ should satisfy

ZθTθ +XθSθ =
[
∂V
∂x̃

]
K(θ)

J̃−1
K(θ)X̃θRθ , (3.26)

Z̃θTθ + X̃θSθ + ỸθUθ = −2J̃−1
K(θ)Π̃θ

[
∂Ṽ
∂x̃

]sym

K(θ)
X̃θRθ . (3.27)

Multiplying (3.27) separately by X̃>θ J̃K(θ) and Ỹ >θ J̃K(θ) on the left and using (3.11)
and the definition of Rθ (3.7), we obtain

Uθ = −2X̃>θ Π̃θ

[
∂Ṽ
∂x̃

]sym

K(θ)
X̃θRθ , (3.28)

−RθX̃>θ Z̃θTθ − Sθ −RθX̃>θ J̃−1
K(θ)X̃θRθUθ = −2Ỹ >θ Π̃θ

[
∂Ṽ
∂x̃

]sym

K(θ)
X̃θRθ . (3.29)

Since X̃>θ Π̃θ = (Π̃θX̃θ)
> = 0, (3.28) yields Uθ = 0. From (3.26) and (3.29) we11

obtain12

Tθ = Z −1
θ

([
∂V
∂x̃

]
K(θ)

Ỹθ − 2XθỸ
>
θ Π̃θ

[
∂Ṽ
∂x̃

]sym

K(θ)
X̃θRθ

)
,

Sθ = −Ỹ >θ J̃K(θ)Z̃θZ
−1
θ

[
∂V
∂x̃

]
K(θ)

Ỹθ

+ 2
(
In − Ỹ >θ J̃K(θ)Z̃θZ

−1
θ Xθ

)
Ỹ >θ Π̃θ

[
∂Ṽ
∂x̃

]sym

K(θ)
X̃θRθ ,

(3.30)

where we have set13

Z θ := Zθ −XθRθX̃
>
θ Z̃θ = Zθ +XθỸ

>
θ J̃K(θ)Z̃θ ∈ Md,d(R) . (3.31)
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The geometric meaning of Z θ is discussed in detail in [9, Section 3.5.4].1

We summarize our findings in the following2

Lemma 3.4. Let (P,Ω) be an exact presymplectic manifold, V ∈ X(P) be a presym-3

plectic vector field, K : Td+n → P be an invariant torus in the sense of Defini-4

tion 3.1, and the matrix Mθ be defined by (3.15). Then the equality (3.25) holds,5

with Uθ = 0 and Tθ and Sθ given by (3.30).6

3.3.4. Factorization of Mθ. Later we will need the representation of M−1
θ that7

follows from the lemma below.8

Lemma 3.5. If the (d+ 2n)× (d+ 2n) matrices Qθ and Wθ are defined by

Qθ :=

 Id 0

0 X̃>θ

0 Ỹ >θ

[ Id 0

0 J̃K(θ)

]
=

 Id 0

0 X̃>θ J̃K(θ)

0 Ỹ >θ J̃K(θ)

 , (3.32)

Wθ =

 Zθ Xθ 0

0 0 In
Ỹ >θ J̃K(θ)Z̃θ −In Ỹ >θ J̃K(θ)Ỹθ

 , (3.33)

then the following identity holds:9

QθMθ = Wθ . (3.34)

This implies that Mθ (3.15) is invertible if and only if Wθ is invertible.10

Proof. The columns of X̃θ and Ỹθ form a (symplectic) basis of R2n, which implies11

that the rows of X̃>θ and Ỹ >θ form a basis of R2n. Since J̃K(θ) is an invertible matrix12

(it corresponds to the symplectic form Ω̃ on Q, recall (2.3) and (2.5)), the rows of13

X̃>θ J̃K(θ) and Ỹ >θ J̃K(θ) from a basis of R2n, so that the matrix Qθ given by (3.32)14

is invertible. The identity (3.34) follows directly from (3.11). �15

4. Approximate solutions16

In this section we will examine the case when K is merely an approximate solu-17

tion as defined below. We will build off of the results in Section 3 for true solutions18

to derive similar results for approximate solutions. We start with the definition for19

approximate solution.20

Definition 4.1. Let (P,Ω) be an exact presymplectic manifold, {Vλ} be a (d+2n)-21

parameter family of presymplectic vector fields, ω ∈ D(γ, σ), and K0 : Td+n → P22

be an embedding. For a value λ0 of the parameter λ, define the error,23

e0,θ := Vλ0, K0(θ) − ∂ωK0,θ ∈ TK0(θ)P ∼= Rd+2n . (4.1)

If some appropriately defined norm of e0 is sufficiently small, then we say that K024

is an approximate solution.25

4.1. Approximately isotropic tori. In Lemma 3.3 we showed that if Kθ is a26

true solution (i.e., if (2.17) is satisfied), then the invariant manifold K = K(Td+n)27

is isotropic, i.e., K∗Ω = 0. The analogous result for this section will be that if K0,θ28

is an approximate solution, then K0 is approximately isotropic, i.e., K∗0 Ω is small.29
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Lemma 4.2. Let (P,Ω) be an exact presymplectic manifold, {Vλ} be a (d + 2n)-1

parameter family of analytic presymplectic vector fields, and K0 ∈ Wρ (2.10) be2

an approximate solution with Diophantine frequency ω ∈ D(γ, σ). Assume that3

Vλ extends holomorphically to some complex neighborhood Br (2.18) of the image4

of Td+n
ρ under K0, for some r > 0. Let L0,θ : TθTd+n → TθTd+n be the matrix5

representation of the pull-back (K∗0 Ω)θ as in (3.1) and (3.2):6

L0,θ = DK>0,θ JK0(θ)DK0,θ . (4.2)

Then there exists a constant C > 0 depending on d, n, σ, ρ, ‖DK0‖ρ, |Vλ0 |C1,Br ,7

and |J |C1,Br , such that for every δ satisfying 0 < δ < ρ
2 , the following bound holds:8

9

‖L0‖ρ−2δ < Cγ−1δ−(σ+1) ‖e0‖ρ . (4.3)

Proof. For the directional derivative of L0,θ (4.2) we have, using (4.6), (4.1), and (3.12):10

∂ωL0,θ = ∂ω
(
DK>0,θ JK0(θ)DK0,θ

)
= ∂ω

(
DK>0,θ

)
JK0(θ)DK0,θ +DK>0,θ ∂ω

(
JK0(θ)

)
DK0,θ +DK>0,θ JK0(θ) ∂ω

(
DK0,θ

)
=
(
DVλ0, K0(θ)DK0,θ −De0,θ

)>
JK0(θ)DK0,θ

+DK>0,θDJK0(θ)

(
Vλ0,K0(θ) − e0,θ

)
DK0,θ

+DK>0,θ JK0(θ)

(
DVλ0, K0(θ)DK0,θ −De0,θ

)
= DK>0,θ

(
DV >λ0, K0(θ) JK0(θ) +DJK0(θ) Vλ0, K0(θ) + JK0(θ)DVλ0, K0(θ)

)
DK0,θ

−
(
De>0,θ JK0(θ)DK0,θ +DK>0,θDJK0(θ) e0,θDK0,θ +DK>0,θ JK0(θ)De0,θ

)
= −

(
De>0,θ JK0(θ)DK0,θ +DK>0,θDJK0(θ) e0,θDK0,θ +DK>0,θ JK0(θ)De0,θ

)
.

From this and the Cauchy bound (2.12) we obtain11

‖∂ωL0‖ρ−δ ≤ C1‖e0‖ρ−δ + C2‖De0‖ρ−δ ≤ Cδ−1‖e0‖ρ . (4.4)

Although K0 is only an approximate solution, the exactness of Ω implies that12

avg (L0) = 0 (the proof of this repeats part of the proof of Lemma 3.3, with K13

replaced by K0). We apply (4.4) and the Rüssmann estimate (2.13) to obtain14

‖L0‖ρ−2δ ≤ Cγ
−1δ−σ ‖∂ωL0‖ρ−δ ≤ Cγ

−1δ−(σ+1)‖e0‖ρ .
�15

4.2. Linearized equation for the corrections. Given a family of presymplectic16

vector fields {Vλ}, the equation (2.17) can be difficult to solve for a value λ̄ of17

the parameter and an embedding K : Td+n → P. So instead of solving it directly18

for λ and K, we start with an approximate solution (λ0,K0) and construct an19

iterative process that produces better approximate solutions. As a result, we obtain20

a sequence (λj ,Kj) (1.2) that converges to (λ∞,K∞) = (λ̄,K).21

Let (λj ,Kj) be an approximate pair. Define the error (cf. (4.1))22

ej,θ := Vλj ,Kj(θ) − ∂ωKj,θ ∈ TKj(θ)P ∼= Rd+2n . (4.5)

We will usually consider ej as a mapping ej : Td+n → Rd+2n, whose derivative,23

Dej : Td+n → Md+2n,d+n(R), is given by24

Dej,θ =
(
DVλj ,Kj(θ) − ∂ω

)
DKj,θ ∈ Md+2n,d+n(R) . (4.6)



16 S. BAUER, N. P. PETROV

Note that in (4.6), DVλj ,Kj(θ) stands for the derivative of the vector field Vλj with1

respect to the spatial variables x ∈ Rd+2n:2

DVλj ,Kj(θ) =
[(
DVλj ,Kj(θ)

)A
B

]
=

[
∂V Aλj,x

∂xB

∣∣∣
x=Kj(θ)

]
∈ Md+2n,d+2n(R) .

Recall that the presymplecticity of Vλj imply that DVλj ,Kj(θ) (3.13) satisfies (3.14).3

Let εj and ∆j be (j + 1)st correction terms, i.e.,4

λj+1 := λj + εj , Kj+1,θ := Kj,θ + ∆j,θ . (4.7)

To derive an equation for the corrections εj and ∆j,θ, we set F [λ,K] := Vλ ◦K −5

∂ωK, so that ej,θ = F [λj ,Kj ](θ). Expanding F [λj+1,Kj+1] about (λj ,Kj), we6

obtain7

ej+1,θ = ej,θ +DVλj ,Kj(θ) ∆j,θ − ∂ω∆j,θ +
[
∂Vλ
∂λ

]
λj ,Kj(θ)

εj +O(|∆j , εj |2) . (4.8)

Therefore, if the corrections εj and ∆j satisfy the linear equation8 (
DVλj , Kj(θ) − ∂ω

)
∆j,θ = −ej,θ −

[
∂Vλ
∂λ

]
λj ,Kj(θ)

εj , (4.9)

the cancellations in the right-hand side of (4.8) guarantee quadratic convergence.9

The system (4.9) of (d+ 2n) equations for the corrections εj and ∆j is a linear10

algebraic equation with respect to εj , and a linear first-order partial differential11

equation with respect to ∆j . Since DVλj , Kj(θ) ∈ Md+2n,d+2n(R) is of a general12

form, is not easy to solve (4.9) and to obtain estimates on its solution. In Section 4.313

we will use the matrix Mθ (3.15) of change of basis from a general one to the14

adapted basis constructed in Section 3.2; the calculations from Section 3.3 will be15

very useful.16

4.3. Solving the linearized equation.17

4.3.1. Change of basis. We use an adapted basis in Rd+2n, so that instead of the18

unknown function ∆j we introduce the unknown function ξj : Td+n → Rd+2n
19

through the linear change of basis20

∆j,θ =: Mj,θ ξj,θ . (4.10)

The change of basis matrix Mj,θ ∈ Md+2n,d+2n(R) is constructed similarly to the21

matrix Mθ in (3.15), but by using the approximate value λj and the approximate22

embedding Kj . Namely, given an approximate invariant torus Kj (which we treat23

as a map Kj : Td+n → Rd+2n), we define24 [
Zj,θ Xj,θ

Z̃j,θ X̃j,θ

]
:= [Zj,θ Xj,θ] := DKj,θ ∈ Md+2n,d+n(R)

as in (3.6). If the matrix X̃>j,θX̃j,θ is invertible (cf. Definition 4.3 below), define25

Rj,θ :=
(
X̃>j,θX̃j,θ

)−1 ∈ Mn,n(R) as in (3.7),26

Ỹj,θ := J̃−1
Kj(θ)

X̃j,θ Rj,θ ∈ M2n,n(R) , Yj,θ :=

[
0

Ỹj,θ

]
∈ Md+2n,n(R)

as in (3.8) and (3.9), and the approximate change of basis matrix Mj,θ as in (3.15):27

Mj,θ := [DKj,θ Yj,θ] = [Zj,θ Xj,θ Yj,θ] =

[
Zj,θ Xj,θ 0

Z̃j,θ X̃j,θ Ỹj,θ

]
∈ Md+2n,d+2n(R) .
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Below we will need to invert the matrices Mj,θ in order to solve the linearized1

equation, which motivates the following2

Definition 4.3. The map K ∈ Wρ is said to be a non-degenerate torus if the3

matrices X̃>θ X̃θ ∈ Mn,n(R) and Mθ ∈ Md+2n,d+2n(R) defined above (and therefore,4

the matrix Wθ as in (3.33)) are invertible.5

We will always assume that Kj is a non-degenerate torus (this is a part of6

Definition 4.7 below which is one of the assumptions in the Main Theorem).7

As before, we think of the columns Zj,θ,µ, Xj,θ,a, and Yj,θ,a (µ = 1, . . . , d, a =8

1, . . . , n) of the matrices Zj,θ, Xj,θ, and Yj,θ as vectors in TKj(θ)P. If Kj is close to9

the true solution K, then these vectors still form a basis of TKj(θ)P as in the true10

case. By construction, the columns of Zj,θ and Xj,θ span the tangent space to the11

approximately invariant torus Kj := Kj(Td+n):12

span
{{
Zj,θ,µ

}d
µ=1

,
{
Xj,θ,a

}n
a=1

}
= TKj(θ)Kj . (4.11)

However, unlike the case of a true solution, Kj is not invariant with respect to the13

flow of Vλj , and ker ΩKj(θ) is generally not a subspace of TKj(θ)Kj .14

Making the substitution (4.10) in (4.9) and assuming that Mj,θ is invertible, we15

obtain the following equation for the new unknown function ξj,θ:16

M−1
j,θ

(
DVλj ,Kj(θ)Mj,θ − ∂ωMj,θ

)
ξj,θ − ∂ωξj,θ = −M−1

j,θ

(
ej,θ +

[
∂Vλ
∂λ

]
λj ,Kj(θ)

εj

)
.

(4.12)
To rewrite the coefficient of ξj,θ in (4.12) in a simple form, we want that17

(DVλj ,Kj(θ) − ∂ω)Mj,θ = Mj,θ (Cj,θ +Bj,θ) := Mj,θ

 0 0 Tj,θ
0 0 Sj,θ
0 0 0

+Bj,θ


(4.13)

where Bj,θ is “small,” i.e., vanishing if ej becomes identically zero (cf. (3.25)). For18

the left-hand side, long and unenlightening calculations (cf. Section 3.3.2) yield19 (
DVλj ,Kj(θ) − ∂ω

)
Mj,θ =

[
Dej,θ

(
DVλj ,Kj(θ) − ∂ω

)
Yj,θ

]
=

[(
DVλj ,Kj(θ) − ∂ω

)
DKj,θ

(
DVλj ,Kj(θ) − ∂ω

) [ 0

Ỹj,θ

]]

=


0 0

[∂V λj
∂x̃

]
Kj(θ)

[∂V λj
∂x̃

]
Kj(θ)

Ỹj,θ

0 0 −2J̃−1
Kj(θ)

Π̃j,θ

[
∂Ṽλj
∂x̃

]sym

Kj(θ)
X̃j,θRj,θ

+

[
Dej,θ

[
0

E [ej ](θ)

]]
.

Here we have set Π̃j,θ := I2n − X̃j,θRj,θX̃
>
j,θ : R2n → R2n (cf. (3.21)),20

E [ej ](θ) := J̃−1
Kj(θ)

DJ̃Kj(θ) ej,θ Ỹj,θ − J̃
−1
Kj(θ)

[
∂ẽj,θ
∂θ

]
Rj,θ

+ Ỹj,θ

([
∂ẽj,θ
∂θ

]>
X̃j,θ + X̃>j,θ

[
∂ẽj,θ
∂θ

])
Rj,θ ∈ M2n,n(R) ,

(4.14)
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where
[
∂ẽj,θ
∂θ

]
is the 2n × n matrix with entries

[
∂ẽj,θ
∂θ

]i
a

:=
∂ed+ij,θ

∂θd+a
, i = 1, . . . , 2n,1

a = 1, . . . , n, and DJ̃Kj(θ) ej,θ stands for the 2n× 2n matrix with entries2

(
DJ̃Kj(θ) ej,θ

)i
k

:=

d+2n∑
A=1

∂J̃ ik
∂xA

∣∣∣∣
Kj(θ)

eAj,θ , i, k = 1, . . . , 2n ,

For the entries of the matrix Cj,θ (4.13), we obtain (similarly to Section 3.3.3)3

Tj,θ = Z −1
j,θ

([∂V λj
∂x̃

]
Kj(θ)

Ỹj,θ − 2Xj,θỸ
>
j,θΠ̃j,θ

[
∂Ṽλj
∂x̃

]sym

Kj(θ)
X̃j,θRj,θ

)
,

Sj,θ = −Ỹ >j,θJ̃Kj(θ)Z̃j,θZ
−1
j,θ

[∂V λj
∂x̃

]
Kj(θ)

Ỹj,θ

+ 2
(
In − Ỹ >j,θJ̃Kj(θ)Z̃j,θZ

−1
j,θXj,θ

)
Ỹ >j,θΠ̃j,θ

[
∂Ṽλj
∂x̃

]sym

Kj(θ)
X̃j,θRj,θ ,

(4.15)

where we have set Z j,θ := Zj,θ +Xj,θỸ
>
j,θJ̃Kj(θ)Z̃j,θ ∈ Md,d(R) (cf. (3.30), (3.31)).4

Summarizing, with the help of (4.13), (4.14), and (4.15), we rewrote (4.12) as5

(Cj,θ +Bj,θ) ξj,θ − ∂ωξj,θ = −M−1
j,θ

(
ej,θ +

[
∂Vλ
∂λ

]
λj ,Kj(θ)

εj

)
, (4.16)

where Cj,θ is defined in (4.13) and (4.15), and Bj,θ is a “small” matrix, given by6

Bj,θ = M−1
j,θ

[
Dej,θ

[
0

E [ej ](θ)

]]
. (4.17)

4.3.2. Invertibility issues. We define the (d+ 2n)× (d+ 2n) matrices Qj,θ and Wj,θ7

in exactly the same way as Qθ (3.32) and Wθ (3.33) but with Xθ, Yθ, Zθ, and JK(θ)8

replaced by Xj,θ, Yj,θ, Zj,θ, and JKj(θ), respectively. Since the rank of the (2n×2n)9

matrix [X̃j,θ Ỹj,θ] is maximal and J̃Kj(θ) is non-degenerate, Qj,θ is non-degenerate.10

By a direct calculation we obtain (cf. (3.34))11

Qj,θMj,θ = Wj,θ+Pj,θ := Wj,θ+

 0 0 0

X̃>j,θJ̃Kj(θ)Z̃j,θ X̃>j,θJ̃Kj(θ)X̃j,θ 0

0 0 0

 , (4.18)

where the matrix Pj,θ is small (if Kj were a true solution, Pj,θ would be zero).12

Lemma 4.4. Assume that the hypotheses of Lemma 4.2 hold. Then there exists a13

constant C depending on d, n, σ, ρ, ‖DKj‖ρ, |Vλj |C1,Br , and |J |C1,Br , such that14

for every δ satisfying 0 < δ < ρ
2 , the following bound holds:15

‖W−1
j Pj‖ρ−2δ ≤ Cγ−1δ−(σ+1)‖ej‖ρ . (4.19)

Proof. Recalling the bound (4.3) on the norm of the pull-back Lj (4.2) of the16

presymplectic form Ω to the torus Kj = Kj(Td+n), we obtain17

‖W−1
j Pj‖ρ−2δ ≤ C ‖Pj‖ρ−2δ

≤ C1 ‖X̃>j (J̃ ◦Kj) Z̃j‖ρ−2δ + C2 ‖X̃>j (J̃ ◦Kj) X̃j‖ρ−2δ

≤ C ‖DK>j (J̃ ◦Kj)DKj‖ρ−2δ = C ‖Lj‖ρ−2δ

≤ Cγ−1δ−(σ+1) ‖ej‖ρ .

�18
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The approximate factorization (4.18) can be used to write the inverse matrix1

M−1
j,θ in a convenient form, and Lemma 4.4 yields some useful bounds:2

Lemma 4.5. Assume that the hypotheses of Lemma 4.2 hold. Let 0 < δ < ρ
2 and3

the error ej satisfy the bound4

Cγ−1δ−(σ+1)‖ej‖ρ ≤
1

2
, (4.20)

where C is the same constant as in (4.19). Then the matrix Mj,θ is invertible, and5

6

M−1
j,θ = W−1

j,θ Qj,θ +ME
j,θ , (4.21)

where the error term, ME
j,θ, is given by7

ME
j,θ = −

(
Id+2n +W−1

j,θ Pj,θ
)−1

W−1
j,θ Pj,θW

−1
j,θ Qj,θ , (4.22)

and satisfies the bound8 ∥∥ME
j

∥∥
ρ−2δ

≤ C ′γ−1δ−(σ+1)‖ej‖ρ ; (4.23)

here C ′ is a constant that depends on the same parameters as the constant C9

in (4.19).10

Proof. The expression (4.22) comes from (4.18), and (4.23) follows from (4.19). �11

4.3.3. Bounds on the “small” parts. Recall that, in order to find an approximate12

solution of the linearized equation (4.9), we changed the variable ∆j,θ to ξj,θ by13

(4.10) to transform it to the form (4.12). Then we rewrote the coefficient of ξj,θ in14

(4.12) as a sum of a “big” part, Cj,θ (given by (4.13) and (4.15)), and a “small”15

part, Bj,θ (4.17). In the Lemma below we give bounds on the “small” terms16

in (4.12).17

Lemma 4.6. Let Kj ∈ Wρ and the error ej be defined by (4.5). Let the pair18

(λj ,Kj) be non-degenerate (in the sense of Definition 4.7 below) for the family19

{Vλ} of presymplectic analytic vector fields. If the error ej satisfies (4.20), then the20

change of variables (4.10) transforms the linearized equation (4.9) to21

(Cj,θ +Bj,θ) ξj,θ − ∂ωξj,θ = −M−1
j,θ

(
ej,θ + ∂λVλj ,Kj(θ) εj

)
= −W−1

j,θ Qj,θ ej,θ −W
−1
j,θ Qj,θ

[
∂Vλ
∂λ

]
λj ,Kj(θ)

εj

−ME
j,θ ej,θ −ME

j,θ

[
∂Vλ
∂λ

]
λj ,Kj(θ)

εj ,

(4.24)

where Cj,θ is defined by (4.13) and (4.15), Bj,θ by (4.17), ME
j by (4.22). Further-22

more,23

‖Bj‖ρ−2δ ≤ Cδ
−1 ‖ej‖ρ ,∥∥ME

j ej
∥∥
ρ−2δ

≤ Cγ−1δ−(σ+1) ‖ej‖2ρ ,∥∥∥ME
j

[
∂Vλ
∂λ

∣∣
λj
◦Kj

]
εj

∥∥∥
ρ−2δ

≤ Cγ−1δ−(σ+1)
∥∥∥ ∂Vλ∂λ ∣∣λj ◦Kj

∥∥∥ ‖ej‖ρ |εj | .
(4.25)

Proof. Equation (4.24) follows directly from (4.16) and (4.21), so we only need to24

derive the bounds (4.25). Combining (4.17) and (4.21), we obtain25

Bj,θ =
(
W−1
j,θ Qj,θ +ME

j,θ

)[
Dej,θ

[
0

E [ej ](θ)

]]
.
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From the definition (4.14) of E [ej ](θ) and the Cauchy bound (2.12),1

‖E [ej ]‖ρ−2δ ≤ C1 ‖ej‖ρ−2δ + C2δ
−1 ‖ej‖ρ−δ ≤ Cδ

−1 ‖ej‖ρ−δ ,

which, together with the bound (4.23) on ME
j , yields the first bound in (4.25):2

‖Bj‖ρ−2δ ≤
(∥∥W−1

j Qj
∥∥
ρ−2δ

+
∥∥ME

j

∥∥
ρ−2δ

)(
‖Dej‖ρ−2δ + ‖E [ej ]‖ρ−2δ

)
≤
(
C1 + C2γ

−1δ−(σ+1)‖ej‖ρ
)
γ−1 ‖ej‖ρ−δ ≤ Cγ

−1 ‖ej‖ρ .

The remaining two bounds in (4.25) in are direct consequences of (4.23). �3

4.3.4. Solving the simplified equation. To use the Newton method for finding ξj,θ,4

it is enough to solve (4.24) retaining only the “big” terms, i.e., ignoring all terms of5

higher order with respect to ‖ej‖. As we will show below (see (4.37)), the term εj6

is of order of ‖ej‖. Lemma 4.6 allows us to keep only the leading terms in (4.24):7

Cj,θξj,θ − ∂ωξj,θ = −W−1
j,θ Qj,θ ej,θ − Λj,θ εj , (4.26)

where we have set8

Λj,θ := W−1
j,θ Qj,θ

[
∂Vλ
∂λ

]
λj ,Kj(θ)

. (4.27)

Let us denote the first d components of ξj,θ by ξz
j,θ, the next n components by ξx

j,θ,9

and the last n components by ξy
j,θ. Using the specific form of Cj,θ (4.13), we rewrite10

(4.26) in the form11

∂ω

 ξz
j,θ

ξx
j,θ

ξy
j,θ

 = W−1
j,θ Qj,θ ej,θ + Λj,θ εj +

 Tj,θ ξ
y
j,θ

Sj,θ ξ
y
j,θ

0

 . (4.28)

Integrating both sides of (4.28) over Td+n, we obtain that (4.28) has a solution if12

and only if the average over Td+n of its right-hand side is 0:13

avg
(
W−1
j Qj ej

)
+ avg (Λj) εj +

 avg
(
Tj ξ

y
j

)
avg

(
Sj ξ

y
j

)
0

 = 0 . (4.29)

Observe that the right-hand side of the last n equations of the system (4.28)14

does not involve ξy
j , so that the last n equations of (4.28) have the form15

∂ωξ
y
j,θ =

(
W−1
j,θ Qj,θ ej,θ + Λj,θ εj

)y
, (4.30)

where the superscript y stands for the last n components. The system (4.30) for16

ξy
j,θ has a solution if and only if the last-hand side of (4.30) has zero average. To17

satisfy this condition, we will require initially that εj satisfy the linear system18

avg
(
W−1
j Qj ej

)
+ avg (Λj) εj = 0 , (4.31)

which in turn has a solution if and only if the matrix avg (Λj) is invertible. In order19

to guarantee that we can solve (4.31) for εj , we introduce the following20

Definition 4.7. The pair (λ,K) is said to be non-degenerate for a (d + 2n)-21

parameter family of vector fields Vλ if K ∈ Wρ is a non-degenerate torus (recall22

Definition 4.3) and the matrix Λ (as in (4.27)) has a non-singular average:23

rank avg (Λ) = d+ 2n , avg (Λ) :=

∫
Td+n

Λθ dθ1 · · · dθd+n . (4.32)
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We assume that the pair (λj ,Kj) is non-degenerate, and set εj to be equal to1

the preliminary value2

εprelim
j := −{avg (Λj)}−1

avg
(
W−1
j Qj ej

)
, (4.33)

so that (4.31) is satisfied; εprelim
j satisfies the bound3

|εprelim
j | ≤ C avg (ej) ≤ C ‖ej‖ρ . (4.34)

This choice of εj guarantees the existence of a solution ξy
j of (4.30) which (thanks4

to (4.34) and the Rüssmann’s inequality (2.13)) satisfies the bound5

‖ξy
j ‖ρ−δ ≤ Cγ

−1δ−σ
∥∥W−1

j Qj ej + Λjε
prelim
j

∥∥
ρ
≤ Cγ−1δ−σ ‖ej‖ρ . (4.35)

Having found ξy
j from solving (4.30), we redefine εj as6

εj := −{avg (Λj)}−1

avg
(
W−1
j Qj ej

)
+

 avg
(
Tj ξ

y
j

)
avg

(
Sj ξ

y
j

)
0


 (4.36)

to satisfy the solvability condition (4.29) for (4.28). Note that the change from7

εprelim
j (4.33) to εj (4.36) does not affect the component ξy

j . Thanks to (4.35), εj8

satisfies9

|εj | ≤ C
(
‖ej‖ρ−δ +

∥∥ξy
j

∥∥
ρ−δ

)
≤ Cγ−1δ−σ ‖ej‖ρ . (4.37)

With the new value of εj from (4.36), we solve (4.28) to find ξj which, according10

to the Rüssmann’s inequality (2.13) and the bound (4.37), satisfies11

‖ξj‖ρ−2δ ≤ Cγ
−1δ−σ

(∥∥W−1
j Qj ej + Λjεj

∥∥
ρ−δ + C

∥∥ξy
j

∥∥
ρ−δ

)
≤ Cγ−1δ−σ

(
‖ej‖ρ + |εj |+ γ−1δ−σ ‖ej‖ρ

)
≤ Cγ−2δ−2σ ‖ej‖ρ .

(4.38)

We summarize our findings in the following lemma:12

Lemma 4.8. Assume the hypotheses of Lemma 4.6. Then there exist a parameter13

εj and a function ξj that solve the reduced linear equation (4.26) and satisfy the14

bounds (4.37) and (4.38).15

5. The Newton method16

In this section we will collect the estimates for the jth step of the iterative scheme17

and show that the Newton method generates a Cauchy sequence of approximate18

solutions in a Banach space which converges to a true solution. We only give brief19

sketches, referring the reader to [21, 3] for details.20

Lemma 5.1. If the assumptions of Lemma 4.8 are satisfied and rj := ‖Kj −K0‖ρj <21

r, then there exist a function ∆j and a parameter εj ∈ Rd+2n such that22

‖∆j‖ρj−2δj
≤ cjγ−2δ−2σ

j ‖ej‖ρj
‖D∆j‖ρj−3δj

≤ cjγ−2δ
−(2σ+1)
j ‖ej‖ρj

|εj | ≤ cj
∣∣avg(Λj)

−1
∣∣ ‖ej‖ρj ,

(5.1)
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where cj is a constant that depends on n, d, r, ρ, |Vλj |C2,Br , ‖DKj‖ρj , ‖Rj‖ρj , and1 ∥∥∂Vλ
∂λ

∥∥
ρj

Additionally, if2

rj + cjγ
−2δ
−(2σ−1)
j ‖ej‖ρj < r , (5.2)

then3

‖ej+1‖ρj+1
≤ cjγ−4δ−4σ

j ‖ej‖2ρj . (5.3)

Proof. The inequalities (5.1) follow from Lemmata 2.7 and 4.6, and (4.10).4

To see that Kj+1 ∈ Br, that is, Kj+1 stays within the neighborhood where V is5

holomorphically extended, we use (5.1) and (5.2):6

‖Kj+1 −K0‖ρj+1−2δj+1
= ‖Kj + ∆j −K0‖ρj+1−2δj+1

≤ ‖Kj −K0‖ρj + ‖∆j‖ρj−2δj

≤ rj + cjγ
−2δ
−(2σ+1)
j ‖ej‖ρj < r .

To prove (5.3), recall from (4.8) that ξj = M−1
j ∆j was found by solving (4.26),7

so8

DVλj ,Kj(θ) ∆j,θ − ∂ω∆j,θ +
[
∂Vλ
∂λ

]
λj ,Kj(θ)

εj + ej

= Mj,θ

(
Bj,θξj,θ +ME

j,θej,θ +ME
j,θ

[
∂Vλ
∂λ

∣∣
λj
◦Kj

])
,

and each term on the right hand side is quadratically small from Lemma 4.6, hence9 ∥∥DVλj ,Kj ∆j − ∂ω∆j +
[
∂Vλ
∂λ

]
λj ,Kj

εj + ej
∥∥
ρj−2δj

≤ Cγ−3δ−(3σ+1) ‖ej‖2ρj .

Finally, recalling the Taylor expansion (4.8) of ej+1,θ, we see that the remainder10

term is on the order of ‖∆j‖2ρj−2δj
. Thus we get the estimate (5.3). �11

The lemma below guarantees that, if the error is small and some invertibility12

conditions are met at the jth step, then the invertibility holds at the (j+ 1)st step.13

Lemma 5.2. Assume the setup of Lemma 5.1. If cjγ
−2δ
−(σ+1)
j ‖ej‖ρj ≤

1
2 , then:14

(i) if X̃>j X̃j is invertible, then X̃>j+1X̃j+1 is invertible;15

(ii) if Wj is invertible, then Wj+1 is invertible;16

(iii) if avg(Λj) is invertible, then avg(Λj+1) is invertible.17

Proof. Recalling that X̃j is a part of the matrix DKj , we obtain X̃>j+1X̃j+1 =18

X̃>j X̃j +Pj , with Pj := X̃>j ∆̃j,x̃ + ∆̃>j,x̃X̃j + ∆̃>j,x̃∆̃j,x̃, where ∆̃j,x̃ ∈ M2n,2n(R) has19

entries (∆̃j,x̃)ik = ∂(∆̃j)
i/∂x̃k. The bounds (5.1) give an upper bound on the size20

of Pj . The matrix X̃>j X̃j is invertible by assumption, In+
(
X̃>j X̃j

)−1
Pj is invertible21

by the Neumann series, so X̃>j+1X̃j+1 = X̃>j X̃j

(
In +

(
X̃>j X̃j

)−1
Pj
)

is invertible,22

which completes the proof of (i). The proofs of (ii) and (iii) are similar. �23

The lemma below shows how close the initial approximation has to be for the24

Newton method to be iterated indefinitely and to converge to a true solution K∞,25

and gives a bound on the difference between K∞ and the initial approximation K0.26

The proof can be found in [21, Lemma 13].27



KAM TORI FOR PRESYMPLECTIC VECTOR FIELDS 23

Lemma 5.3. Let {cj}j≥0 be the sequence of constants from Lemmata 5.1 and 5.2.1

For 0 < δ0 < min(ρ0/12 , 1) define2

δj := δ02−j , ρj := ρj−1 − 6δj−1 , rj := ‖Kj −K0‖ρj ,

ρ∞ := limj→∞ ρj, K∞ := limj→∞Kj. Then there exists a constant C > 0 depend-
ing on d, n, |Vλ|C2,Br , |J0|C1,Br , ‖DK0‖ρ0 , and |{avg(Λ0)}−1| such that if ‖e0‖ρ0
satisfies the conditions

C24σγ−4δ−4σ
0 ‖e0‖ρ0 ≤

1
2 ,

C
(

1 + 24σ

22σ−1

)
γ−2δ−2σ

0 ‖e0‖ρ0 < r ,

then the Newton method converges to a true solution (λ∞,K∞). Furthermore,3

‖K∞ −K0‖ρ0−6δ0
≤ 22σ

22σ−1 cγ
−2δ−2σ

0 ‖e0‖ρ0 .
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