
Manuscript submitted to doi:10.3934/xx.xx.xx.xx
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

CONVERGENCE RATES FOR SEMISTOCHASTIC PROCESSES1

James Broda∗, Alexander Grigo and Nikola P. Petrov

Department of Mathematics
University of Oklahoma

Norman, OK, 73019, USA

(Communicated by the associate editor name)

Abstract. We study processes that consist of deterministic evolution punctu-
ated at random times by disturbances with random severity; we call such pro-

cesses semistochastic. Under appropriate assumptions such a process admits a

unique stationary distribution. We develop a technique for establishing bounds
on the rate at which the distribution of the random process approaches the sta-

tionary distribution. An important example of such a process is the dynamics

of the carbon content of a forest whose deterministic growth is interrupted by
natural disasters (fires, droughts, insect outbreaks, etc.).

1. Introduction. This line of research began due to a question from an ecologist:2

How should one model the carbon content of an ecosystem that experiences ran-3

domly occurring catastrophes of random severity? The role of disturbances such4

as droughts, forest fires, and insect outbreaks on the dynamics of carbon has been5

discussed in [46], [38], [9], and [44]. In the absence of disturbances, the amount of6

carbon in an ecosystem increases naturally due to photosynthesis and eventually7

approaches the carrying capacity of the ecosystem. On occasion, however, an ex-8

treme event results in significant destruction of an ecosystem and consequently a9

drastic reduction in the amount of carbon stored in the ecosystem.10

In order to model the carbon content of an ecosystem, continuous time continu-11

ous state space semistochastic processes were studied by Leite, Petrov, and Weng in12

[31] and formulae were derived for the densities of the corresponding stationary dis-13

tributions. Semistochastic processes like the one studied in [31] are a particular case14

of the so-called piecewise deterministic Markov processes (PDMPs). The dynamics15

of PDMPs lacks a diffusive component, and has been used in applications to growth-16

fragmentation processes, storage models, exposure to contaminants, communication17

networks, among others (for recent results and references see, e.g., [32, 7, 30, 14]).18

A general framework for studying PDMPs has been developed by Davis [17] (see19

also his book [18]).20
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Given that a stationary distribution exists (and can be calculated explicitly as1

in [31]), a natural question is: At what rate does the process approach its stationary2

distribution? If the time-dependent distributions are absolutely continuous, then3

one approach to resolving this would be to study the evolution of the correspond-4

ing time-dependent densities which is governed by an integro-differential PDE. An5

alternative and more general approach is to analyze the time-evolution of the corre-6

sponding distributions through their action on observables, which is the picture dual7

to using the integro-differential PDE. In this paper we adopt the latter approach8

which works also for distributions that are not absolutely continuous.9

In this paper, we utilize purely probabilistic methods to establish explicitly com-10

putable bounds on convergence rates; consequently, our methods for determining11

convergence rates, are quite different from the methods used in [31] to develop ex-12

act formula for the stationary distributions. The methods we use originated in the13

study of discrete-time Markov chains and are based on establishing a combination14

of minorization and drift conditions. These approaches go back to Doeblin, and15

appear in various forms in [33, 36, 43, 40, 41]. For an overview of more recent16

work see, e.g., [45, 32]. Roughly speaking, minorization conditions are bounds on17

the probability of transitioning in one step from any initial value to some specified18

region in the state space. Drift conditions, on the other hand, need to be applied19

when the state space is unbounded and the stochastic process may drift arbitrarily20

far away. The drift conditions allow us to control the process in some bounded set21

while also keeping track of the probability of the the process drifting out of the set.22

For detailed description of the minorization and drift conditions see Section 3.2, in23

particular, equations (19) and (20).24

While the problem of modeling the carbon content of an ecosystem was the orig-25

inal inspiration for this project, our work can be applied to any problem admitting26

a semistochastic model, i.e., population dynamics, optimal harvesting, virus repro-27

duction, and some of the problems mentioned previously in this Introduction.28

What follows is a brief introduction to the concept of a semistochastic process. By29

semistochastic process we mean a continuous-time, continuous-state process {Xt},30

with state space X , which consists of intervals of deterministic evolution punctuated31

by random events. The random events we typically consider occur on time-scales32

much larger than the typical inter-event time, and are modeled as instantanteous33

events. These processes are assumed to be doubly-stochastic in the sense that there34

is a random severity associated to each event as well as the random time at which35

it occurs. Consequently, these types of processes are quite different from other36

types of stochastic processes and can be used to model dynamical systems that37

lack conservation laws, see [17, 42]. Semistochastic processes do share some com-38

mon features with what are typically referred to as stochastic clearing processes,39

see [47]. A clearing process, however, consists of epochs of random growth punc-40

tuated by instantaneous returns to the initial value once a critical threshhold is41

reached. A semistochastic process replaces the random growth in a clearing process42

with determnistic growth and replaces the deterministic “clearing” with randomly43

occurring disturbances.44

The operator-theoretic framework which we set up to study the dynamics of45

semistochastic processes applies equally well to both scalar- and vector-valued sto-46

chastic processes, but we restrict our attention to scalar processes when deriving47

bounds on convergence rates. In the scalar case we are thus interested in sample48

paths that are piecewise continuous, right-continuous, and have left-hand limits49



SEMISTOCHASTIC CONVERGENCE RATES 3

almost surely (càdlàg). We furthermore focus our attention on disturbances that1

correspond to a diminishing in value. The model that one should have in mind is2

the carbon content in a forest that grows deterministically and is interrupted and3

random times by natural disasters which reduce the amount of carbon. We should4

note that the techniques we use can be adapted to handle more general disturbances5

as well.6

In the time between two consecutive disturbances, {Xt} evolves deterministically,7

governed by the autonomous ordinary differential equation8

d

dt
x(t) = v(x(t)) . (1)

To describe when the disturbances occur, we specify a rate function Λ(x) which is9

a measure of the instantaneous rate of occurrence of the disturbances. We refer to10

Λ(x) as the jump rate for the process.11

Our problem gains another element of randomness from the varying severity of12

the disturbances. In order to describe this severity, we introduce random variables13

Y −n and Yn corresponding to the nth pre- and post- disturbance values, respectively.14

If the nth disturbance occurs at time T , then Y −n and Yn are defined via15

Y −n := lim
t↗T

Xt , Yn := lim
t↘T

Xt .

In the simplest case, we can then model the severity by stipulating a multiplicative
relation between Y −n and Yn. An additional random variable, An is then defined by
setting

Yn = AnY
−
n .

nth Disturbance

Yn

Yn+ 1

Y−n

Y−n+ 1

x(t)

Figure 1. Schematic for pre- and post- disturbance levels.

16

Having specifed the types of processes we propose to study, we now mention17

some works that study similar processes, but usually under different assumptions18

or with different goals. The most common difference is due to the fact that most19

of the research on semistochastic processes is concerned with population dynamics,20

and demographers generally study processes with discrete state-spaces.21
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An interesting application of semistochastic processes is proposed by Bartoszyński1

in [5] to model the development of the rabies virus in an infected host. In this model,2

the population of the virus naturally decreases exponentially due to the immuno-3

logical response of the host, but also has random upward jumps due to the viral4

life cycle. The state space of the model Bartoszyński constructs is discrete and the5

occurrence of jumps is allowed to depend on the current population.6

Continuous-time and continuous state space processes subject to random catas-7

trophes are studied by Gripenberg in [21]. Gripenberg derives an expression for8

stationary distributions using a limit theorem from [1] based on the concept of Har-9

ris recurrence. There is a connection between the type of recurrence condition that10

is established in [21] and the minorization conditions that we establish, however the11

issue of convergence rates is not addressed by Gripenberg. Biedrzycka and Tyran-12

Kamı́nska [8] use operator-theoretic techniques to address the question of existence13

of invariant densities for similar processes.14

Hanson and Ryan in [23] and [24] examine optimal harvesting problems of pop-15

ulations governed by similar processes with discrete state spaces, though they do16

not allow for the randomization of the severity of disturbances. They do, however,17

consider the possibility of populations experiencing both sudden decreases (jumps18

down) and sudden increases (jumps up). With slight modifications, the results we19

present can also be applied in these situations. Hanson and Tuckwell also study20

similar processes with discrete state spaces in [25, 26, 27], though their focus is21

generally on the computation of extinction times. The problem of determining ex-22

tinction times in semistochastic models is addressed more recently by Cairns in [13].23

Transient distributions in discrete time discrete state space processes, e.g., a24

birth/immigration-death process with binomial catastrophes, have been studied in25

[20, 28].26

Recent work [10, 3, 4] develops inverse techniques for growth-fragmentation phe-27

nomena (like cell division and polymerization) that are quite similar to our model.28

In particular, these authors propose a method for calibrating the jump rate from29

empirical measurements.30

The plan of our paper is the following: in Section 2 we state our main results31

on convergence rates, in Section 3 we provide proofs of our results by establishing32

a combination of minorization and drift conditions, we conclude with Section 4 in33

which we apply our results to concrete examples.34

2. Statements of the main results. We start by revisiting the properties of the35

semistochastic process {Xt}. In the time between two consecutive disturbances, Xt36

evolves deterministically, governed by the autonomous ordinary differential equation37

38

d

dt
x(t) = v(x(t)) . (2)

We assume throughout that the vector field v(x) admits a unique global solution39

to (2) for any initial value x(0); global Lischitz continuity of v(x) is a sufficient40

condition. The corresponding flow of (2) with initial condition x(0) = x0 is denoted41

by φt(x0), and the time duration needed to deterministically evolve from x0 to42

x1 > x0 is denoted by ψ(x0, x1). Thus, in the absence of disturbances, we have43

x1 = φt(x0) ⇐⇒ t = ψ(x0, x1) . (3)
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We assume that the occurrences of disturbances have a distribution related to a1

jump rate parameter Λ(x) given by2

P(disturbance occurs in (t, t+ ∆t] |Xt = x) = Λ(x) ∆t+ o(∆t)

as ∆t → 0. Furthermore, to determine the severity of individual disturbances, we3

define the multiplier density, ρ(x, α), with the property that for any a ∈ (0, 1)4

P
(
Yn ≤ ax |Y −n = x

)
=

∫ a

0

ρ(x, α) dα , (4)

where Yn is the nth post-disturbance random variable and Y −n is the nth pre-5

disturbance random variable. It will be convenient to introduce the quantity ζ(x)6

to denote the expected fractional loss resulting from a single disturbance,7

ζ(x) :=

∫ 1

0

ρ(x, α) (1− α) dα ∈ (0, 1) . (5)

Thus larger values of ζ(x) correspond to an expectation of more severe disturbances8

and the limiting value ζ = 0 would result in purely deterministic growth.9

All of this can be consolidated by specifying the infinitesimal generator L of {Xt}.10

The action of L on observables f from the appropriate Banach space is then given11

by12

[Lf ](x) = f ′(x)v(x) + Λ(x)

∫ 1

0

ρ(x, α) [f(αx) − f(x)] dα . (6)

Corresponding to the generator L is a Markov semigroup U t which can be specified13

by its action on observables:14

[U tf ](x) = E[f(Xt)|X0 = x] .

If the distribution of X0 is µ0, then the distribution of Xt is15

µt := µ0U t .
In order to quantify the convergence rates, we use the total variation distance dTV16

defined for any two distributions, µ1 and µ2, by17

dTV(µ1, µ2) := sup
0≤f(x)≤1

|µ1(f)− µ2(f)|.

We are now ready to state our first result.18

Theorem 2.1. Let {Xt} be a semistochastic process with generator (6) on the state19

space X = [0, k], satisfying20

(i) 0 < λ∗ ≤ Λ(x) ≤ λ∗ <∞ for all x ∈ X , for some constants λ∗ and λ∗,21

(ii) ρ(x, α) ≥ ρ∗ for all x ∈ X and α ∈ [0, 1], for some constant ρ∗ > 0,22

(iii) the function v is non-negative, Lipschitz, and v(0) 6= 0 with v(x) = 0 for at23

most finitely many x.24

Then {Xt} converges exponentially fast to its unique stationary distribution π.25

Namely, for any time increment ∆t > 0, and any initial distribution µ0,26

dTV (µt, π) ≤ (1− ε∆t)bt/∆tc , (7)

where27

ε∆t :=
ρ∗Φλ∗ exp(−λ∗∆t)

k
, (8)

28

Φ :=

∫ φ∆t(0)

0

[∆t− ψ(0, z)] dz , (9)
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and φ and ψ defined in (3).1

Remark 1. The bound on the rate of convergence given by (7) can be optimized2

by choosing a value of ∆t that makes this bound tighter. It is intuitively reasonable3

to expect that a value of ∆t that minimizes (1− ε∆t)bt/∆tc should exist. If ∆t is too4

small, then a disturbance is unlikely to occur in the short time interval of length ∆t.5

On the other hand, if ∆t is chosen too large, then we do not control the process6

over a long time interval during which many disturbances of varying severity may7

occur which would make it impossible for us to use any features of the deterministic8

growth. Put differently, the optimal value of ∆t should correspond to appropriate9

balance between the stochastic and the deterministic components of the dynamics10

– for ∆t too small, we observe only the deterministic component, while for ∆t too11

large, we observe mainly the stochastic one. The mathematical intuition behind the12

existence of an “optimal” value of ∆t can be seen from the text in Section 3.3 and,13

in particular, from Figure 2.14

The general strategy of the proof of Theorem 2.1 is the following (the complete15

proof is given in Section 3). We begin by discretizing the process by fixing a ∆t > 016

and studying the resulting discrete-time Markov chain with transition kernel U∆t.17

We then construct a uniform minorization for this discretization, which yields well-18

known exponential bounds on the convergence rates. It remains only to apply the19

well-known fact that dTV (µt, π) is monotonically decreasing in t to obtain bounds20

for the original continuous time-process.21

While the restriction v(0) > 0 may seem unusual for biological models, it is a22

reasonable assumption for the carbon content problem since even in the event of23

a complete catastrophe, there is regrowth. The specific case of v(x) = 1 − x with24

state space X = [0, 1] was considered in [31] as a model for carbon content in an25

ecosystem and meets all conditions of our Theorem 2.1. In establishing a uniform26

minorization, it is essential that the state space be bounded. While this is the case27

for most applications, such as the carbon content problem, it is mathematically28

restrictive. Though the proof requires additional work, we are also able to state a29

result for unbounded state semistochastic processes.30

Theorem 2.2. Let {Xt} be a semistochastic process with generator (6) on the state31

space X = [0,∞), satisfying32

(i) 0 < λ∗ ≤ Λ(x) ≤ λ∗ <∞ for all x ∈ X , for some constants λ∗ and λ∗,33

(ii) ρ(x, α) ≥ ρ∗ for all x ∈ X and α ∈ [0, 1], for some constant ρ∗ > 0,34

(iii) ζ(x) ≥ ζ∗ for all x ∈ X , for some constant ζ∗ > 0,35

(iv) the function v is Lipschitz, satisfies36

0 ≤ v(x) ≤ v∗ = const , v(0) 6= 0 , (10)

and vanishes for at most finitely many x.37

Then {Xt} has a unique stationary distribution π to which it converges at an expo-38

nential rate. Namely, for any initial distribution µ0 and any ∆t > 0, the estimate39

40

dTV (µt, π) ≤
(

2 +
b

1− β
+ Eµ0

[X0]

)
(1− ε∆t,κ)rbt/∆tc (11)

holds with Φ given by (9),41

ε∆t,κ :=
ρ∗Φζ∗λ∗ exp(−λ∗∆t)

κ
,
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1

β := e−λ∗ζ∗∆t , b :=
v∗

λ∗ζ∗

(
1 − e−λ∗ζ∗∆t

)
,

2

θ :=
1 + 2b+ κβ

1 + κ
, Θ := 1 + 2(βκ+ b) , (12)

3

r :=
ln θ

ln
θ(1−ε∆t,κ)

Θ

=
ln 1

θ

ln 1
θ + ln Θ + ln 1

1−ε∆t,κ
∈ (0, 1) , (13)

where κ can be chosen to be any number satisfying4

κ >
2b

1− β
. (14)

Remark 2. From the argument in Section 3.4, it can be easily seen that the5

assumptions on the lower bounds on Λ(x) and ζ(x) in the statement of Theorem 2.26

could be relaxed to infx∈X [Λ(x)ζ(x)] > 0. In this case the statement of Theorem 2.27

remains unchanged if the product λ∗ζ∗ is replaced by infx∈X [Λ(x)ζ(x)].8

Remark 3. Note that the bound (11) on the rate of convergence depends on the9

choice of ∆t and κ (cf. Remark 1). To obtain tight bounds, one can choose values10

of ∆t and κ that minimize (1− ε∆t,κ)r/∆t, which can be done numerically as shown11

in the examples in Section 4. Intuitively, the optimal value of ∆t corresponds12

to balancing the deterministic and the stochastic components of the process. The13

optimal value of κ, on the other hand, balances the rate of convergence while staying14

in [0, κ] with the time it takes to re-enter the region [0, κ] after leaving it, as one15

can see from the proof in Section 3.4. This can be clearly seen in the numerical16

example in Section 4.2 and, in particular, in Figures 5 and 6.17

The details of the proof of Theorem 2.2 are provided in Section 3. The strategy18

of the proof is similar to that of Theorem 2.1. The primary difference is that19

in this case we cannot establish a uniform minorization. Instead, we establish a20

combination of drift and minorization conditions which enables us to apply a result21

of Rosenthal [43] (see also [40, 41]) to produce the desired bounds on convergence22

rates.23

3. Proofs of the main results. The proofs of Theorems 2.1 and 2.2 follow sim-24

ilar ideas, so we develop them in parallel. In Section 3.1 we derive some inequal-25

ities about the Markov semigroup U t and relate the rates of convergence of the26

continuous-time semigroup U t and of its discretization (see (17) below) to the sta-27

tionary distribution. We define the drift condition and state some results on mi-28

norization in Section 3.2. The bounds of the rates of convergence for bounded and29

unbounded state space are derived in Sections 3.3 and 3.3, respectively.30

3.1. Some useful inequalities. We separate the infinitesimal generator into two31

components, L = L0 + L1, where32

[L0f ](x) = f ′(x)v(x)− Λ(x)f(x)

corresponds to deterministic evolution plus a loss term, and33

[L1f ](x) = Λ(x)

∫ 1

0

ρ(x, α)f(y) dα



8 JAMES BRODA AND ALEXANDER GRIGO AND NIKOLA P. PETROV

reflects the “gain”. We introduce the semistochastic survival function,1

S(t, x) := exp

(
−
∫ t

0

Λ (φs(x)) ds

)
, (15)

which represents the conditional probability of starting at x and evolving deter-2

ministically for time t with no occurrence of a disturbance. Then the sub-Markov3

semigroup U0 generated by L0 is4

[U t0f ](x) = S(t, x) f(φt(x)) ,

which can be verified directly using that5

∂

∂t
S(t, x) = −Λ(φt(x))S(t, x) ,

∂

∂t
f(φt(x)) = v(φt(x)) f ′(φt(x)) .

The Markov semigroup U t can be computed iteratively, as given in the following6

Proposition 1. Let U t be a strongly continuous Markov semigroup with infinitesi-
mal generator L and assume that L = L0 +L1, with L0 generating the sub-Markov
semigroup U t0. Then the action of U t on an observable f can be decomposed into

[U tf ](x) = [U t0f ](x) +

∫ t

0

[
U t−s0 (L − L0)Usf

]
(x) ds .

Proof. Let 0 ≤ s ≤ t, and recall that U0 and U0
0 are both identity operators. Then∫ t

0

[
U t−s0 (L − L0)Usf

]
(x) ds =

∫ t

0

[
d

ds

(
U t−s0 Us

)
f

]
(x) ds

=
[(
U0

0 U t − U t0 U0
)
f
]

(x) =
[
U tf

]
(x)−

[
U t0f

]
(x) .

Solving for U t above yields the result.7

Combining this with the expression (6) for L, we have8

[U tf ](x) =
[
U t0f

]
(x) +

∫ t

0

[
U t−s0 (L − L0)Usf

]
(x) ds

= S(t, x)f(φt(x))

+

∫ t

0

ds S(t− s, x) Λ
(
φt−s(x)

) ∫
P
(
φt−s(x),dy

)
[Usf ] (y) .

(16)

Noticing that in (16), U t0 is positive, we obtain9

Lemma 3.1. If U t is a Markov semigroup with infinitesimal generator L (6), then[
U tf

]
(x) ≥

∫ t

0

ds S(t− s, x) Λ
(
φt−s(x)

) ∫ 1

0

dαρ(x, α)S(s, αφs(x)) f(αφs(x)) .

Next, we establish an inequality linking convergence rates for continuous-time10

Markov processes to their discretizations. We discretize the continuous-time process11

{Xt} by sampling it at times that are separated by time increments of fixed specified12

size ∆t. The choice of a constant separation time ∆t allows for straightforward13

comparison between the continuous-time process {Xt} and the discretized process14

{Xn∆t}n≥0. The optimal value of ∆t (recall Remark 1) can be selected in each15

particular example, as illustrated in Section 4.16
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Lemma 3.2. Let π denote the stationary distribution for a continuous-time Markov1

process {Xt} with Markov semigroup U t and let ∆t > 0 be a fixed time increment.2

If we set3

Q = U∆t , (17)

then for any initial distribution µ0 of X0,

dTV

(
µ0 U t, π

)
≤ dTV (µ0Q

n, π) ,

where n = bt/∆tc is the greatest integer less than or equal to t/∆t .4

Proof. Write t = n∆t+τ for 0 ≤ τ < ∆t, then for any observable f with 0 ≤ f ≤ 1,∣∣µ0 U tf − πf
∣∣ =

∣∣µ0 Un∆t Uτf − πf
∣∣ =

∣∣µ0 Un∆t Uτf − πUτf
∣∣

≤ sup
|g|∞≤ 1

∣∣µ0 Un∆t g − πg
∣∣ = dTV(µ0Q

n, π) ,

where we used the invariance of π and the fact that 0 ≤ U tf ≤ 1.5

3.2. Minorization and drift condition. A Markov chain Xn with transition6

kernel Q on a state space X is said to satisfy a minorization condition on a subset7

A ⊆ X if there is a probability measure η on X , a positive integer n0, and a number8

ε > 0 such that9

Qn0(x,B) ≥ ε η(B) (18)

for all x ∈ A and for any measurable set B of X . By appropriately redefining Q,10

we can write this condition as11

[Qf ] (x) =

∫
Q(x, dy) f(y) ≥ ε

∫
f(y) dη(y) (19)

for any nonnegative observable f and for all x ∈ A. If in these conditions the subset12

A is the whole state space X , we say that Xn admits a uniform minorization.13

The following theorem can be found in [19] or [34].14

Theorem 3.3. If there exists an n0 ∈ N such that the transition kernel Q of a15

Markov chain on a state space X satisfies (18) for all x ∈ X and any measurable16

set B ⊆ X , then for any initial distribution µ0, the total variation distance to its17

unique stationary distribution π satisifes18

dTV (µ0Q
n, π) ≤ (1− ε)bn/n0c .

In the proof of Theorem 2.2 we need to impose an additional condition. A Markov19

chain Xn with state space X satisfies a drift condition if there exists a nonnegative20

function V : X 7→ R≥0, a number β < 1, and some finite b ∈ R such that21

E [V (X1)|X0 = x] ≤ β V (x) + b (20)

for all x ∈ X . The function V has sometimes been referred to as Lyapunov function22

in the literature.23

When a uniform minorization is unavailable, one can first establish a drift condi-24

tion, and subsequently minorize on a subset A of X , to obtain the following result25

proved in [43, Theorem 12].26

Theorem 3.4. Suppose a Markov chain {Xn} with transition kernel Q on a state27

space X satisfies a drift condition (20), and a minorization condition (18) on the28

set A = V −1([0, κ]) ⊆ X , for some κ satisfying (14). Then the Markov chain {Xn}29
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has a unique stationary distribution π, and for any 0 < r < 1 and any n ∈ N, we1

have for any initial distribution µ02

dTV (µ0Q
n, π) ≤ (1− ε)nr +

(
θ1−rΘr

)n(
1 +

b

1− β
+ Eµ0 [V (X0)]

)
, (21)

with θ and Θ given by (12).3

3.3. Bounds on the convergence rates for bounded state space. In this sec-4

tion we present a proof of Theorem 2.1 for a semistochastic process with a bounded5

state space.6

To discretize the continuous-time process {Xt}, we fix a value ∆t > 0 and define7

the Markov transition kernel Q of the discretization {Xn∆t} via Q := U∆t.8

To establish a uniform minorization, we first note that, for any nonnegative9

observable f , we can apply Lemma 3.1 to conclude that10

[Qf ](x) ≥
∫ ∆t

0

ds S(∆t− s, x) Λ
(
φ∆t−s(x)

) ∫ 1

0

dαρ(x, α)S(s, αφs(x)) f(αφs(x)) .

Using the assumption that 0 < λ∗Λ(x) ≤ λ∗, we have11

S(t, x) ≥ exp(−λ∗t) for all x ∈ [0, k) .

Combining these inequalities with the bounds on ρ(x, α) and Λ(x) assumed in The-12

orem 2.1, we arrive at13

[Qf ](x) ≥ ρ∗ λ∗ exp(−λ∗∆t)
∫ ∆t

0

ds

∫ 1

0

dα f(αφs(x)) .

Changing the variable α to z = αφs(x) and interchanging the order of integration,
we have

[Qf ](x) ≥ ρ∗ λ∗ exp(−λ∗∆t)
∫ ∆t

0

ds

∫ 1

0

dα f(αφs(x))

= ρ∗λ∗ exp(−λ∗∆t)
∫ ∆t

0

ds (φs(x))
−1
∫ φs(x)

0

dz f(z)

≥ ρ∗λ∗ exp(−λ∗∆t)
∫ ∆t

0

ds k−1

∫ φs(0)

0

dz f(z)

=
ρ∗ λ∗
k

exp(−λ∗∆t)

∫ φ∆t(0)

0

dz f(z)

∫ ∆t

ψ(0,z)

ds

=
ρ∗λ∗
k

exp(−λ∗∆t)
∫ φ∆t(0)

0

f(z) [∆t− ψ(0, z)] dz ,

where have made use of the monotonicity of φt(x), the boundedness of the state14

space X = [0, k] (for finite k), and the fact that v(0) > 0 to arrive at a uniform15

in x ∈ X positive lower bound for [Qf ](x). Multiplying and dividing by Φ (9), we16

obtain the uniform minorization (19) with ε = ε∆t (8) and minorizing measure η17

(19) whose density is18

dη

dz
=

∆t− ψ(0, z)

Φ
1{0 ≤ z ≤ φ∆t(0)} .

Figure 2 illustrates how the support of the minorizing measure is constructed and19

elucidates its meaning. Namely, for any initial value x ∈ X , there is a nonzero20

probability that in the time interval [0,∆t], a disturbance will bring the process21

under the the trajectory of 0 (i.e., in the shaded region). Once it is in the shaded22
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region, the process can never leave it in the time interval [0,∆t]. The minorizing1

measure η is due to this accumulation of probability in the support [0, φ∆t(0)] of η.2

Combining the uniform minorization with Theorem 3.3 and Lemma 3.2 completes

0 ∆t

x

φ∆t(0)

φ∆t(x)

Figure 2. On the construction of the minorizing measure in The-
orem 2.1.

3

the proof of 2.1.4

3.4. Bounds on the convergence rates for unbounded state space. As in5

the proof of Theorem 2.1, we start the proof of Theorem 2.2 by fixing a value6

of ∆t > 0 and letting Q = U∆t be the transition kernel for the corresponding7

discretization.8

Due to the unbounded nature of the state space in Theorem 2.2, we start by9

establishing a drift condition, i.e., an upper bound on E [V (X∆t)|X0 = x] of the10

form (20), for the specific choice V (x) = I(x), where I the identity map I(x) = x.11

To obtain an upper bound on E[I(X∆t)|X0], we compute [LI](x) from (6):12

[LI](x) = v(x) + Λ(x)

∫ 1

0

ρ(x, α)[αx− x] dα = v(x)− Λ(x)ζ(x)x , (22)

where ζ is defined by (5). From the conditions on v (10) and Λ, we thus have13

[LI](x) ≤ v∗ − λ∗ζ(x)x for all x ∈ X . (23)

Recall that, for any observable f , the quantity14

Mt := f(Xt)− f(X0)−
∫ t

0

[Lf ](Xs) ds ,

is a martingale. Applying this for f = I, we obtain that, for any t ≥ 0,15

E[Mt] = E
[
Xt −X0 −

∫ t

0

[LI](Xs) ds

∣∣∣∣X0 = x

]
= 0 . (24)

Setting u(t) = E[I(Xt)|X0 = x] = E[Xt|X0 = x] and writing [LI](Xs) explicitly16

from (22), we can rewrite (24) as an integral equation17

u(t) = u(0) +

∫ t

0

E [v(Xs)− Λ(Xs)ζ(Xs)Xs|X0 = x] ds . (25)
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The sample paths are right-continuous, thus the right hand side of (25) can be1

differentiated with respect to t. Differentiating (25) and referencing (23), we have2

u′(t) = E [v(Xt)− Λ(Xt)ζ(Xt)Xt|X0 = x] ≤ v∗ − λ∗ζ∗u(t) .

Rearranging this inequality and multiplying by the integrating factor eλ∗ζ∗t gives3

d

dt

(
eλ∗ζ∗tu(t)

)
≤ v∗eλ∗ζ∗t ,

or, equivalently,4

d

dt

(
eλ∗ζ∗tu(t)− v∗eλ∗ζ∗t

λ∗ζ∗

)
≤ 0 .

Therefore the expression in the parentheses is decreasing with t, so it must obtain5

its maximum on [0,∞) at t = 0; recalling that u(0) = x, we have6

eλ∗ζ∗tu(t)− v∗

λ∗ζ∗
eλ∗ζ∗t ≤

(
eλ∗ζ∗tu(t)− v∗

λ∗ζ∗
eλ∗ζ∗t

)∣∣∣∣
t=0

= x− v∗

λ∗ζ∗
.

Solving for u(t) and setting t = ∆t produces the desired drift condition for the7

discretized process {Xn∆t},8

E[X∆t|X0 = x] ≤ e−λ∗ζ∗∆t x+
v∗

λ∗ζ∗

(
1 − e−λ∗ζ∗∆t

)
, (26)

as in (20) with V = I, β = e−λ∗ζ∗∆t and b = v∗

λ∗ζ∗

(
1 − e−λ∗ζ∗∆t

)
.9

Having established the drift condition, we can minorize Q on [0, κ] for any κ <∞10

by using the same argument as in the proof of Theorem 2.1. In order to be able11

to apply Theorem 3.4, we additionally require that κ satisfy (14). To complete12

the proof of Theorem 2.2, we choose the value of r in such a way that the two13

terms in the right-hand side of (21) balance each other, which for large n gives us14

(1− ε)r = θ1−rΘr, which gives the expression (13) for r. In particular, with this15

choice of r,16

(1− ε)nr +
(
θ1−rΘr

)n(
1 +

b

1− β
+ Eµ0

[X0]

)
=

(
2 +

b

1− β
+ Eµ0

[X0]

)
(1− ε)nr

for all n. Combining this with Lemma 3.2 and Theorem 3.4 completes the proof of17

Theorem 2.2.18

4. Examples. In this section we illustrate our results on two examples. In both19

cases we assume that the jump rate Λ(x) has a constant value λ, and that the sever-20

ity of disturbances is uniformly distributed, i.e., ρ(x, α) = 1. We also demonstrate21

how one can optimize the relevant parameters ∆t and κ in order to obtain tighter22

bound on rates of convergence.23

4.1. Example: bounded state space. In this example we consider a model of24

growth with saturation on X = [0, k]:25

x′(t) = k − x , k = const > 0 .

In this case (cf. (3)),26

φt(x) = k + (x− k)e−t , ψ(x0, x) = ln
k − x0

k − x
.

From Theorem 2.1, for fixed ∆t and arbitrary initial distribution µ0, the following27

bound holds28

dTV

(
µ0 U t, π

)
≤ (1− ε∆t)bt/∆tc
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(π is the unique stationary distribution). We have1

Φ =

∫ k(1−e−∆t)

0

(
∆t− ln

k

k − z

)
dz = k(∆t + e−∆t − 1) ,

2

ε∆t =
Φλ e−λ∆t

k
= λ e−λ∆t(∆t + e−∆t − 1) .

For convergence rates, the quantity of interest is (1 − ε∆t)1/∆t (cf. (7)). For con-3

creteness, take λ = 1. In Figure 3, we plot (1 − ε∆t)1/∆t as a function of ∆t and4

observe that it exhibits a minimum at ∆t ≈ 0.82, for which ε∆t ≈ 0.115. The intu-5

itive reason for existence of such an optimal value of ∆t was discussed in Remark 1.6

Setting ∆t = 0.82, we obtain that, for any initial distribution µ0, the total variation

0 1 2 3 4 5
0.80

0.85

0.90

0.95

1.00

( 1 − ε∆t)
1/∆t

Figure 3. Plot of (1− ε∆t)1/∆t vs. ∆t.

7

distance between the time-evolved distribution, µt, and the stationary distribution,8

π, satisfies the inequality9

dTV(µt, π) ≤ (1− 0.115)bt/0.82c ≤ 1.13 e−0.148 t .

It is worth noting that in this example, the bounds do not depend on the initial10

distribution, µ0. To illustrate the influence of the choice of ∆t on the convergence11

bounds, we plot (1−ε∆t)bt/∆tc as a function of t for several values of ∆t in Figure 4.12

13

4.2. Example: unbounded state space. Consider the case of constant growth14

rate on X = [0,∞):15

x′(t) = v = const > 0 .

Our flow and time-duration functions are16

φt(x) = x+ vt , ψ(x0, x) =
x− x0

v
.

Following Theorem 2.2, we first establish a drift condition. In this particular exam-17

ple, the average fractional loss ζ(x) = 1
2 does not depend on x, so we can compute18

the expectation exactly,19

E[X∆t|X0 = x] = e−λ∆t/2 +
2v

λ

(
1− e−λ∆t/2

)
,
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0 5 10 15 20
t

0.0

0.2

0.4

0.6

0.8

1.0

∆t = 0. 2

∆t = 0. 82

∆t = 1

∆t = 2

Figure 4. Plots of (1− ε∆t)bt/∆tc vs. t for selected values of ∆t.

which gives that the drift parameters are β = e−λ∆t/2, b = 2v
λ

(
1− e−λ∆t/2

)
. To1

compute explicit bounds on the convergence rates, we need to select a size of the2

time interval ∆t as well as the value κ > 2b
1−β = 4v

λ for which we will minorize3

the process on [0, κ]. In order to optimize our bounds, we select ∆t and κ so as4

to minimize the right-hand side of (11). One easily computes Φ = v(∆t)2 and5

ε∆t,κ = v(∆t)2 λ e−λ∆t

κ . For θ and Θ (12) we obtain6

θ =
1 + 4v

λ +
(
κ− 4v

λ

)
e−λ∆t/2

1 + κ
, Θ = 1 +

4v

λ
+

(
2κ− 4v

λ

)
e−λ∆t/2 ;

in the expression for θ, note that the restriction on κ ensures the positivity of the7

exponential term in the numerator. For concreteness, we continue the example with8

the specific values v = 1 and λ = 2, and obtain β ≈ 0.405 and b ≈ 0.595. We can9

then make appropriate choices for ∆t and κ by minimizing the expression10

(1− ε∆t,κ)
r(∆t,κ)

∆t

as illustrated in Figures 5 and 6. The dependence of this expression on ∆t and κ is11

in accordance with our reasoning in Remarks 1 and 3.12

Consequently, we choose ∆t = 0.904, κ = 3.83, and r as in (13) to obtain an
explicit bound on the total variation distance between the time-evolved distribution,
µt, and the stationary distribution, π,

dTV (µt, π) ≤ C(1− 0.070)rbt/0.904c

≤ 1.02C e−0.014 t ,

with C = 3 + Eµ0
[X0]. Unlike in the bounded state space example, the bounds do13

depend on the initial distribution, µ0, through the multiplicative factor, C.14
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