Change of basis in a linear space

Food for Thought Problem 1. Let V be a linear space without any additional structure on it (i.e., there is no norm, inner product, or the concept of orthogonality). Consider the linear operator A : $V \rightarrow V$ acting on V. Let $\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}$ be a basis in V. One can define the matrix elements of A in this basis as follows:

$$
\mathrm{A} \mathbf{f}_{j}=: \sum_{i=1}^{n} a_{i j} \mathbf{f}_{i},
$$

so that the matrix of A in this basis is $\underline{\underline{A}}=\left(a_{i j}\right)$ (see equation (7) on page 457).
(a) Let $\mathbf{u}=\sum_{j=1}^{n} u_{j} \mathbf{f}_{j}$. Find the components of $A \mathbf{u}$ in the basis $\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}$; in other words, if $\mathbf{v}=\mathbf{A} \mathbf{u}$, find the numbers v_{i} such that $\mathbf{v}=\sum_{i=1}^{n} v_{i} \mathbf{f}_{i}$.
Solution:

$$
\begin{aligned}
\mathbf{v} & =\mathrm{A} \mathbf{u}=\mathrm{A} \sum_{j} u_{j} \mathbf{f}_{j}=\sum_{j} u_{j} \mathrm{~A} \mathbf{f}_{j} \\
& =\sum_{j} u_{j} \sum_{i} a_{i j} \mathbf{f}_{i}=\sum_{i}\left(\sum_{j} a_{i j} u_{j}\right) \mathbf{f}_{i} .
\end{aligned}
$$

Comparing this with $\mathbf{v}=\sum_{i} v_{i} \mathbf{f}_{i}$, we see that

$$
v_{i}=\sum_{j} a_{i j} u_{j}
$$

Recalling the definition of a multiplication of two matrices, we can interpret this equality as follows: if the vectors \mathbf{u} and \mathbf{v} are written as column vectors (i.e., as $n \times 1$ matrices, where $n=\operatorname{dim} V$), and $\underline{\underline{A}}=\left(a_{i j}\right)$ is an $n \times n$ matrix, then the column vector $\mathbf{v}=\mathrm{Au}$ is the product of the matrix $\underline{\underline{A}}$ and the column vector \mathbf{u}.
(b) Let B be another linear operator with matrix elements $\left(b_{i j}\right)$ in the basis $\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}$. Find the matrix elements of the operator $A B$ in the same basis. Here $A B$ stands the composition of the operators in the sense that $(A B) \mathbf{u}:=A(B \mathbf{u})$.
Solution:

$$
\begin{aligned}
(\mathrm{AB}) \mathbf{u} & =\mathrm{A}(\mathrm{Bu})=\mathrm{A}\left(\mathrm{~B} \sum_{j} u_{j} \mathbf{f}_{j}\right)=\mathrm{A}\left(\sum_{j} u_{j} \mathrm{~B} \mathbf{f}_{j}\right)=\mathrm{A}\left(\sum_{j} u_{j} \sum_{i} b_{i j} \mathbf{f}_{i}\right) \\
& =\mathrm{A}\left(\sum_{j, i} u_{j} b_{i j} \mathbf{f}_{i}\right)=\sum_{j, i} u_{j} b_{i j} \mathrm{~A} \mathbf{f}_{i}=\sum_{j, i} u_{j} b_{i j} \sum_{k} a_{k i} \mathbf{f}_{k}=\sum_{j, i, k} u_{j} b_{i j} a_{k i} \mathbf{f}_{k} \\
& =\sum_{k}\left[\sum_{j}\left(\sum_{i} a_{k i} b_{i j}\right) u_{j}\right] \mathbf{f}_{k}=\sum_{k}\left[\sum_{j}(\underline{\underline{A}} \underline{\underline{B}})_{k j} u_{j}\right] \mathbf{f}_{k},
\end{aligned}
$$

therefore the k th component of $(A B) \mathbf{u}$ is

$$
[(\mathrm{AB}) \mathbf{u}]_{k}=\sum_{j}(\underline{\underline{A}} \underline{\underline{B}})_{k j} u_{j}
$$

This together with the result from part (a) allows us to conclude that the matrix of the linear operator AB is $\underline{\underline{A}} \underline{\underline{B}}$.
(c) Let $\mathrm{C}: V \rightarrow V$ be an invertible linear operator, i.e., a linear operator that has an inverse C^{-1}, so that $\mathrm{C}\left(\mathrm{C}^{-1}\right)=\mathrm{C}^{-1} \mathrm{C}=\mathrm{I}$ (where I is the identity operator: $\mathrm{I} \mathbf{u}=\mathbf{u}$ for any $\mathbf{u} \in V$, the matrix of I in any basis is the unit matrix $\left.\underline{\underline{I}}=\left(\delta_{i j}\right)\right)$. Let the operators C and C ${ }^{-1}$ have matrices $\underline{\underline{C}}=\left(c_{i j}\right)$ and $\underline{\underline{D}}=\left(d_{i j}\right)$, in the basis $\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}$:

$$
\mathrm{C} \mathbf{f}_{j}=\sum_{i=1}^{n} c_{i j} \mathbf{f}_{i}, \quad \mathrm{C}^{-1} \mathbf{f}_{j}=\sum_{i=1}^{n} d_{i j} \mathbf{f}_{i}
$$

Show that the matrix $\underline{\underline{D}}$ corresponding to C^{-1} is equal to the inverse of the matrix $\underline{\underline{C}}$ corresponding to C, i.e., $\underline{\underline{D}}=\underline{\underline{C}}^{-1}$.
$\underline{\text { Solution: }}$ By the result of part (b), the operator $\mathrm{C}\left(\mathrm{C}^{-1}\right)$ has matrix $\underline{\underline{C}} \underline{\underline{D}}$, so $\mathrm{C}\left(\mathrm{C}^{-1}\right)=1$ implies that $\underline{\underline{C}} \underline{\underline{D}}=\underline{\underline{I}}$, i.e., that $\underline{\underline{D}}=\underline{\underline{C}}^{-1}$.
(d) Let us use the operators C and C^{-1} to define a new basis in V. Let the vectors of the new basis $\widetilde{\mathbf{f}}_{1}, \ldots, \widetilde{\mathbf{f}}_{n}$ be defined by

$$
\mathbf{f}_{j}=\mathrm{C} \widetilde{\mathbf{f}}_{j}=\sum_{i=1}^{n} c_{i j} \widetilde{\mathbf{f}}_{i}
$$

clearly, this implies that

$$
\widetilde{\mathbf{f}}_{j}=\mathrm{C}^{-1} \mathbf{f}_{j}=\sum_{i=1}^{n} d_{i j} \mathbf{f}_{i}\left(=\sum_{i=1}^{n}\left(\underline{\underline{C}}^{-1}\right)_{i j} \mathbf{f}_{i}\right) .
$$

Prove that if \widetilde{u}_{j} are the components of \mathbf{u} in the new basis, i.e., $\mathbf{u}=\sum_{j=1}^{n} \widetilde{u}_{j} \widetilde{\mathbf{f}}_{j}$, then $\widetilde{u}_{i}=\sum_{j=1}^{n} c_{i j} u_{j}$.
Solution:

$$
\mathbf{u}=\sum_{j} u_{j} \mathbf{f}_{j}=\sum_{j} u_{j} C \widetilde{\mathbf{f}}_{j}=\sum_{j} u_{j} \sum_{i} c_{i j} \widetilde{\mathbf{f}}_{i}=\sum_{i}\left(\sum_{j} c_{i j} u_{j}\right) \widetilde{\mathbf{f}}_{i}
$$

- compare with

$$
\mathbf{u}=\sum_{j} \widetilde{u}_{j} \widetilde{\mathbf{f}}_{j}
$$

to get

$$
\widetilde{u}_{i}=\sum_{j} c_{i j} u_{j}
$$

(e) Now we want to find the matrix of the operator A in the new basis $\widetilde{\mathbf{f}}_{1}, \ldots, \widetilde{\mathbf{f}}_{n}$. Define the matrix elements $\widetilde{a}_{i j}$ of A in the new basis by

$$
\mathbf{A} \widetilde{\mathbf{f}}_{j}=: \sum_{i=1}^{n} \widetilde{a}_{i j} \widetilde{\mathbf{f}}_{i}
$$

and let $\underline{\underline{\widetilde{A}}}=\left(\widetilde{a}_{i j}\right)$. Show that $\underline{\underline{\widetilde{A}}}=\underline{\underline{C}} \underline{\underline{A}} \underline{\underline{C}}^{-1}$.
Solution: Using the formulas from part (d) that connect the bases \mathbf{f}_{i} and $\widetilde{\mathbf{f}}_{i}$, we obtain

$$
\begin{aligned}
\mathrm{A} \widetilde{\mathbf{f}}_{j} & =\mathrm{A} \sum_{i} d_{i j} \widetilde{\mathbf{f}}_{i}=\sum_{i} d_{i j} \mathrm{~A} \widetilde{\mathbf{f}}_{i} \\
& =\sum_{i, k} d_{i j} a_{k i} \widetilde{\mathbf{f}}_{k}=\sum_{i, k, l} d_{i j} a_{k i} c_{l k} \widetilde{\mathbf{f}}_{l}=\sum_{l}\left(\sum_{i, k} c_{l k} a_{k i} d_{i j}\right) \widetilde{\mathbf{f}}_{l}
\end{aligned}
$$

Comparing this with $\mathbf{A} \widetilde{\mathbf{f}}_{j}=\sum_{l} \widetilde{a}_{l j} \widetilde{\mathbf{f}}_{l}$, we see that

$$
\widetilde{a}_{l j}=\sum_{i, k} c_{l k} a_{k l} d_{i j}
$$

i.e., that $\underline{\underline{\widetilde{A}}}=\underline{\underline{C}} \underline{\underline{A}} \underline{\underline{C}}^{-1}$ (recall that $\left.\underline{\underline{C}}^{-1}=\left(d_{i j}\right)\right)$.

