
Elements of Counting

The Basic Principle of Counting. Suppose that two experiments are to be performed. If
experiment 1 can result in any one of m possible outcomes, and if for each outcome of experiment
1 there are n possible outcomes of experiment 2, then there are mn possible outcomes of the two
experiments.
Proof: Simply enumerate all possible outcomes:

Exp 2 → 1 2 . . . n
Exp 1 ↓

1 (1, 1) (1, 2) . . . (1, n)
2 (2, 1) (2, 2) . . . (2, n)
.
.
.
m (m, 1) (m, 2) . . . (m, n)

Example: Drawing one card as a sequence of two experiments:

Exp 2 → ♠ ♣ ♦ ♥
Exp 1 ↓

2 2♠ 2♣ 2♦ 2♥
3 3♠ 3♣ 3♦ 3♥
4 4♠ 4♣ 4♦ 4♥
5 5♠ 5♣ 5♦ 5♥
6 6♠ 6♣ 6♦ 6♥
7 7♠ 7♣ 7♦ 7♥
8 8♠ 8♣ 8♦ 8♥
9 9♠ 9♣ 9♦ 9♥
10 10♠ 10♣ 10♦ 10♥
J J♠ J♣ J♦ J♥
Q Q♠ Q♣ Q♦ Q♥
K K♠ K♣ K♦ K♥
A A♠ A♣ A♦ A♥

Generalization: We are to perform r experiments with: n1 possible outcomes of Exp 1; n2 possible
outcomes of Exp 2 ∀ outcome of Exp 1; n3 possible outcomes of Exp 3 ∀ outcome of Exp 1 and
Exp 2; . . .; nr possible outcomes of Exp r ∀ outcome of Exp 1, Exp 2, . . ., Exp (r−1). Then there
is a total of n1 n2 n3 · · · nr possible outcomes of the r experiments.

Example: A committee consists of 3 freshmen, 4 sophomores, 5 juniors, and 2 seniors. A subcom-
mittee of four people, one person from each class, is to be chosen. How many different subcommit-
tees are possible? Answer: 3 · 4 · 5 · 2 = 120.

Example: How many non-negative numbers can be represented in the binary system by 1 byte,
i.e., an 8-tuple of 0’s and 1’s? 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 Answer: 28 = 256.

Example: How many different 7-place license plates are possible if the 3 places are to be occupied
by letters, and the next 4 places by numbers. Answer: 26 · 26 · 26 · 10 · 10 · 10 · 10 = 175, 760, 000.

Example: How many different 7-place license plates are possible if the 3 places are to be occupied
by letters, and the next 4 places by numbers, if repetition among letters or numbers were prohibited?
Answer: 26 · 25 · 24 · 10 · 9 · 8 · 7 = 78, 624, 000.
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Permutations – ordered arrangements of distinct objects.

Theorem: The number of permutations of n distinct objects is n! := n · (n− 1) · · · 2 = ·1.

Terminology:
• distinct = different = distinguishable
• n-tuple = an ordered set of n objects.
• Group = an unordered set of n objects.

Example: The number of different ordered arrangements of the numbers 1, 2, 3 is 3! = 6, namely,
(123), (132), (213), (231), (312), (321).

Example: Number of distinct rankings in a class of 6 men and 4 women. (Assuming that all
grades are different.)

• # of different rankings = 10! = 3, 628, 800. • If the men are ranked among themselves, and

the women are ranked among themselves:

6! = 720 different rankings of the men,
4! = 24 different rankings of the women,

6! 4! = 17, 280 different rankings.

Permutations of possibly indistinguishable objects

Example: How many different letter arrangements can be formed by using the letters
P E P P E R ?
Solution: If all the letters were distinguishable, P1 E1 P2 P3 E2 R , there would be 6! = 720
arrangements.
However, not all of these arrangements are different if the P’s and the E’s don’t have subscripts!
How many are the different arrangements?
For each configuration of letters (without subscripts), say P R E P P E, there are 3! possible
permutations of the letters P among themselves, and 2! permutations of the letters E among
themselves,

P1 R E1 P2 P3 E2

P1 R E1 P3 P2 E2

P2 R E1 P1 P3 E2

P2 R E1 P3 P1 E2

P3 R E1 P1 P2 E2

P3 R E1 P2 P1 E2

P1 R E2 P2 P3 E1

P1 R E2 P3 P2 E1

P2 R E2 P1 P3 E1

P2 R E2 P3 P1 E1

P3 R E2 P1 P2 E1

P3 R E2 P2 P1 E1

thus, the total number of different letter arrangements is
6!

3! 2!
= 60.

Generalization: The number of permutations of n objects, of which n1 are alike, n2 are alike,
. . ., nr are alike is

n!
n1!n2! · · · nr!

=:
( n

n1, n2, n3, · · · , nr

)
.

Note that n1 + n2 + · · ·+ nr = n.

Example: How many different linear arrangements are there of the letters A, B, C, D, E, F, for
which:

• there are no restrictions?
• A and B are next to each other?
• A is before B? (Not necessarily directly before B.)
• E is not last in line?
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Combinations = different groups of r objects that can be formed from a total of n distinguishable
objects?

A reminder: A “group” means an unordered collection of objects.

Example: How many different groups of 3 can be selected from the 5 items A, B, C, D, and E?

Solution: 5 ways the select the initial item, 4 ways to select the next item, and 3 ways to select
the last item. But, since the order does not matter, the 3! selections ABC, ACB, BAC, BCA,
CAB, and CBA, correspond to the same group of objects chosen. That is, we have overcounted by
a factor of 3! = 6. Hence, the number of groups of 3 objects drawn from 5 distinguishable objects
is 5·4·3

1·2·3 = 10.

Generalization: Counting the number of combinations, i.e., different groups of r objects that
can be formed from a total of n distinguishable objects:
• the number of different ordered selections is n (n− 1) (n− 2) · · · (n− r + 1)︸ ︷︷ ︸

r factors

;

• since r! ordered selections correspond to one group, the number of groups is n (n−1) (n−2) ··· (n−r+1)
r! ,

which is equal to

n (n− 1) · · · (n− r + 1)
r!

· (n− r) (n− r − 1) · · · 2 · 1
(n− r) (n− r − 1) · · · 2 · 1

=
n!

(n− r)! r!
.

Binomial coefficients: For 0 ≤ r ≤ n, define the binomial coefficient
(
n
r

)
(read “n choose r”) by(n

r

)
:=

n!
(n− r)! r!

,

where, by definition, 0! = 1, so that
(n

0

)
=

(n
n

)
= 1.

Example: Number of groups of 4 cards drawn from a deck of 52 cards:
(52

4

)
= 52·51·50·49

4! =

270, 725.

Example: From a group of 8 women and 6 men, a committee consisting of 4 women and 3 men is
to be formed.

• How many different committees are possible?
• What if one man and one woman refuse to serve together?

Example: A student is to answer 7 out of 10 questions in an examination.

• How many choices does she have? Answer:
(10

7

)
.

• How many if she must answer at least 3 of the first 5 questions?

The binomial theorem:

(x + y)n =
n∑

r=0

(n
r

)
xr yn−r .

3



An elementary identity:
(n

r

)
=

( n
n− r

)
, 1 ≤ r ≤ n.

Direct proof:
(n

r

)
=

n!
r! (n− r)!

=
( n

n− r

)
.

Combinatorial proof: The number
(n

r

)
is equal to the number of different way of choosing a group

of r objects out of n different objects. But choosing the r objects in the group is equivalent to

choosing the n− r objects that do not belong to the group, which can be done in
( n

n− r

)
different

ways.

Another identity:
(n

r

)
=

(n− 1
r − 1

)
+

(n− 1
r

)
for 1 ≤ r ≤ n.

Multinomial coefficients: If n1 + n2 + · · ·+ nr = n, then( n
n1, n2, · · · , nr

)
=

n!
n!!n2! · · ·nr!

.

Theorem: The number of ways to divide a set of n distinct objects into r distinct groups of

respective sizes n1, n2, . . ., nr (like in the figure below) is
( n

n1, n2, · · · , nr

)
.

• • · · · •︸ ︷︷ ︸
n1 objects

• • · · · •︸ ︷︷ ︸
n2 objects

· · · • • · · · •︸ ︷︷ ︸
nr objects︸ ︷︷ ︸

n1+n2+···+nr=n objects

Proof: There are:
(

n
n1

)
distinct ways to choose for the 1st group; having chosen the 1st group of

n1 elements, there are
(
n−n1

n2

)
distinct choices for the 2nd group; having chosen the 1st and the 2nd

groups of n1 + n2 elements total, there are
(
n−n1−n2

n3

)
distinct choices for the 3rd group, . . ., finally,

there are
(
n−n1−n2−···−nr−1

nr

)
choices for the rth group. Apply the generalized principle of counting

and do the necessary cancellations.

The multinomial theorem:

(x1 + x2 + · · ·+ xr)n =
∑ ( n

n1, n2, · · · , nr

)
xn1

1 xn2
2 · · · xnr

r ,

where the summation is over all ordered sets (n1, n2, . . . , nr) such that 0 ≤ n1 ≤ n, 0 ≤ n2 ≤ n,
. . ., 0 ≤ nr ≤ n, and n1 + n2 + · · ·+ nr = n.

Example: Consider a group of 20 people. If everyone shakes hands with everyone else, how many
handshakes take place?
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