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Abstract 
 
Spatial and/or temporal variabilities of clouds is of paramount importance for at least two intensely 
researched sub-problems in global and regional climate modeling: 
 

cloud-radiation interaction where correlations can trigger three-dimensional (3D) radiative transfer 
effects; and 

 
dynamical cloud modeling where the goal is to realistically reproduce the said correlations. 

 
We propose wavelets as a simple yet powerful way of quantifying cloud variability.  More precisely, we 
use �“semi-discrete�” wavelet transforms that, at least in the present statistical applications, have advant-
ages over both its continuous and discrete counterparts found in the bulk of the wavelet literature. 
 
With the particular choice of normalization we adopt, the scale-dependence of the variance of the 
wavelet coefficients (i.e., the wavelet energy spectrum) is always a better discriminator of transition 
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from �“stationary�” to �“nonstationary�” behavior than conventional methods based on auto-correlation 
analysis, second-order structure function (a.k.a., the semi-variogram), or Fourier analysis.  Indeed, the 
classic statistics go, at best, from monotonically scale- or wavenumber-dependent to flat at such a 
transition; by contrast, the wavelet spectrum changes the sign of its derivative with respect to scale. 
 
We apply one-dimensional (1D) and two-dimensional (2D) semi-discrete wavelet transforms to remote 
sensing data on cloud structure from two sources: 
 

an upward-looking millimeter wave cloud radar (MMCR) at U.S. Department of Energy�’s (DOE�’s) 
climate observation site in Oklahoma deployed as part of the Atmospheric Radiation Measurement 
(ARM) Program 

 
DOE�’s multispectral thermal imager (MTI), a high-resolution, space-borne instrument in sun-
synchronous orbit described by Weber et al. (1999). 

 
For each type of data, we have at least one theoretical prediction�—with already existing empirical 
validation�—for a power-law relation for wavelet statistics with respect to scale.  This is expected in 
physical (i.e., finite-scaling range) fractal phenomena.  In particular, we find long-range correlations in 
cloud structure coming from the important nonstationary regime.  More surprisingly, we also uncover 
artifacts in the data that are traceable either to instrumental noise (in the satellite data) or to smoothing 
assumptions (in the MMCR data processing).  Finally, we discuss the potentially damaging ramifica-
tions the smoothing artifact can have on both cloud-radiation and cloud-modeling studies using MMCR 
data. 
 
Background on Wavelet Transforms and Scaling Laws 
 
The wavelet transform of a signal f(x) is essentially a convolution with a scaled replicate of an 
oscillating function (x): 
 
 T [f](a,b) = a-1 f(x) ( (x-b)/a) dx. (1) 
 
where x is real for a time-series and a 2D vector for an image.  (We use the vector notation here for 
more generality.)  The arguments (a,b) are respectively the scale and position of the wavelet (·).  
Figure 1 shows the popular Haar wavelet, which is piece-wise constant in both 1D and 2D.  In the latter 
case, there are in fact three possible wavelets associated with differences the horizontal and vertical 
directions and across diagonals.   
 
We will be seeking scaling relations for the wavelet coefficients in Eq. (1), i.e., a parametric 
representation of  
 

T [f](a,b)2 b ~ a2H,  (2) 
 
where ... b means averaging over the argument b.  This is simply the variance of T [f](a,b) as long as 
T [f](a,b) b = 0, which means that there is no overall trend in the data, assuming (x) has single 
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oscillation (per direction in 2D).  For better accuracy, the wavelet coefficients in Eq. (1) are ordered by 
increasing value before summing their squares at each scale a , the pixel scale.  The exponent H in 
Eq. (2) is then obtained by linear regression in log-log axes. 
 

 
 
Figure 1.  Haar wavelets and scaling functions in 1D (left) and in 2D (right).  The top row are the 
scaling functions, followed by the characteristically piece-wise constant wavelets. 
 
Following Arnéodo et al. (1995), we note that using SF(x) = (x�– )�– (x) in Eq. (1) for 1D brings us 
back to the classic structure functions, of turbulence theory fame in particular.  The parameter H in 
Eq. (2) is a Hurst-like exponent that has the usual (Mandelbrot 1982) meaning when between 0 and 1, as 
expected in the vast literature using SF(x).  When using more interesting wavelets, H can, in principle, 
be negative or greater than unity depending on the choices of f and .  For instance, with the 
nonstandard normalization used in Eq. (1), -correlated stationary (or �“white�”) noise yields H = �–1/2.  
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By the same token, exactly �“1/f�” noise yields H = 0, while smooth (everywhere differentiable) signals 
yield H = 1.  Consider the following examples: 
 

Stationary behavior is found in uncorrelated instrumental noise at very small scales and after the 
large-scale decorrelation of cloudiness; here, wavelet coefficients decrease with increasing scale. 

 
Nonstationary behavior is found in the turbulence of horizontal structure in clouds as well as 
instrumental or physical smoothing in the data; here, wavelet coefficients increase with scale. 

 
Figure 2c illustrates these trends in the wavelet spectrum schematically, while panels 2a and 2b show the 
corresponding outcomes of Fourier and structure-function analyses, respectively.  The reason the 
wavelets are scaled as prescribed in Eq. (1) is now clear.  The exponents of the statistical moments of 
the coefficients are the same as for structure functions at all orders, at least for nonstationary signals 
with stationary increments. 
 

 
 
Figure 2.  Variability analysis in an idealized turbulence experiment.  The �“integral�” scale R marks the 
transition from the inertial sub-range, where presumably a downscale Kolmogorov cascade is unfolding, 
to an independent cascade.  The Kolmogorov or �“dissipation�” scale  marks the transition from inertial- 
to dissipation-dominated dynamics.  We assume here that the sampling is such that instrumental (e.g., 
velocity probe) noise dominates the smallest scales, hence a final scale break without any physical 
significance.  (a) Fourier spectrum, (b) structure functions, and (c) wavelet variance/energy spectrum. 
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Discrete and Semi-Discrete Wavelet Transforms 
 
In the wavelet literature, the integral transform in Eq. (1) is assumed continuous in a and b; it is also 
very redundant.  Complete removal this redundancy is achieved by the discrete wavelet transform where 
 aj = 2j  ,  (3) 
 
where j = 0, ..., jmax, while b is sampled on a grid of constant 2aj.  This enables Mallat�’s (1989) efficient 
cascade technique for computing T [f](a,b) known as �“multi-resolution analysis�” or MRA.  The 
maximum scale of interest is determined by jmax, which is set to the integer part of log2N�–1 where N is 
the length of the times series in 1D, or to that of log2min{Nx,Ny}�–1 for a 2D field or �“image�” with 
N = Nx Ny pixels.  The algorithmic complexity of an MRA is N, as illustrated on a simple example in 
Figure 3. 
 
We prefer to use the �“semi-discrete�” wavelet transforms, which are discrete in scale, but continuous in 
position (Davis et al. 1999, and references therein):  b covers all possible positions.  That means all 
positions where the support of the wavelet is still inside the data field.  The number of coefficients and 
algorithmic complexity then grows only as NlogN, where N is the number of points (pixels) in the time-
series (image).  The redundancy of this representation at each scale has been exploited previously, using 
several different terminologies, which would be misleading here, in denoising and data compression 
applications but we see it as a safeguard when cumulating spatial statistics.  Notice that, by now, we 
have effectively relaxed the habitual (Daubechies 1992) constraints of orthogonality and normalization 
in discrete wavelet theory. 
 
The semi-discrete wavelet transform was implemented using a simple variant of Mallat�’s (1989) MRA 
trick, which calls for recursive estimation of the coefficient of �“scaling function�” (x) associated with 
the Haar wavelet (or wavelet family in the 2D case).  This is simply the average over 2 neighboring 
pixels at any scale (4 in the 2D case).  For more details, we refer to Davis et al. (1999).  For better 
memory management (especially in 2D) these averages in Eq. (2) are computed during the multi-
resolution recursion at a given aj in Eq. (3). 
 
1D Horizontal Transects of mm-Radar Reflectivity 
 
We first analyze a 6-day long sequence of cloud mm-radar data collected at the ARM Southern Great 
Plains (SGP) site, January 9�–14, 1998.  Vertical profiles of reflectivity Zt(z) are re-mapped into constant 
altitude transects fz(x)  Zt(z), where x = vt (v being the appropriate advection velocity).  A full suite of 
range bins with z = 45 m is captured every t = 10 s (hence x 50 m at a nominal 5 m/s advection 
speed).  The data displayed in Figure 4 are not very interesting to visualize.  Indeed, during this long 
cloudy episode, there was always a low-level cloud occupying typically the first 20 levels, and not much 
else.  We performed 1D semi-discrete wavelet analyses for each level, using 5 short instances of linear 
interpolation to compensate for the data dropout between 24-hour periods. 
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Figure 3.  Discrete Haar wavelet analysis in 1D using multi-resolution analysis for N = 16.  The 
alternate notation < a,b f> for T [f](a,b) in Eq. (1) is used here where a,b(x) = ( (x�–b)/a ).  At each 
step in the (inverse) cascade, disjoint 2-pixel averages are computed, yielding the scaling-function 
coefficients.  They are only used to proceed to the next (larger) scale.  In the semi-discrete wavelet 
transform, the only difference is that the 2-pixel averages are not disjoint but, on the contrary, sampled 
continuously (i.e., at the smallest pixel scale ). 
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Figure 4.  MMCR data from the SGP site for January 9-14, 1998.  The standard (Clothiaux et al. 1995) 
rendering of �“best-estimate�” radar reflectivity is used along with the ceilometer-based lower cloud 
boundary.  Time increases day-by-day from left to right, then top to bottom. 
 
Figure 5 shows a log-log plot of log2 T [f](a,b)2

b versus j = log2(a/ x) = log2a+constant from Eq. (3) 
for levels z = 180 m and 630 m.  The range of scales is huge, from 10 s to 10  214 s, which is 46 hours 
(corresponding to several hundred km). 
 
We see that the lower layers exhibit three scaling regimes.  As scale increases, we see a very smooth 
regime, with H close to 1, followed by a regime with H 1/3, which is characteristic of boundary-layer 
turbulence, and finally we see a stationary regime with H < 0.  Keeping the mean wind constant at 

5 m/s, transitions are respectively at 0.5 km and 50 km.  The latter scale is probably somewhat 
exaggerated since the wind eventually meanders. 
 
The small-scale transition from turbulence to smoothness is not observed in any in situ probings that we 
know of.  In fact, it is perfectly well explained by the interpolation performed between 4 or more 
neighboring horizontal samples in the specific �“best estimate�” radar operation mode used here.  As it 
turns out, this mode is designed for whole-column monitoring and compromises the sampling in the 
boundary layer.  The interpolation remedy is safe in the sense of mean values but it corrupts the 
correlation structures. 
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Figure 5.  1D semi-discrete wavelet spectrum analysis of two horizontal layers of ARM cloud-radar 
data in Figure 4.  Solid line:  z = 180 m; dashed line:  z = 630 m. 
 
As an example, it would be very misleading to use these radar data at small scales to assess cloud model 
performance (e.g., using a Large-Eddy Simulation or LES) since, in dynamical modeling too, it is 
unfortunately necessary to introduce an artificial smoothing.  In this context, the artificial smoothing is 
used to control small-scale numerical instabilities.  An MMCR-to-LES comparison would be a 
reasonable approach to model validation.  However, it will lead to the erroneous conclusion that the 
numerical smoothing procedure has a minimal impact on the model output since cloud structure is 
apparently smooth at the smallest observable scales. 
 
Another source of confusion can follow by comparing the interpolated MMCR field with high-
resolution satellite (e.g., LANDSAT) images at visible/near-IR wavelengths, which are affected 
inherently by radiative smoothing.  This is an inescapable physical process due to the multiple 
scattering.  It explains in particular the observed decoupling of spatial fluctuations in zenith radiance and 
in liquid water path at scales smaller than about the cloud thickness (Davis et al. 1997), precisely a few 
hundred meters in the present case.  Here, an MMCR-to-LANDSAT comparison would lead to the 
erroneous conclusion that the radiative smoothing either is absent or has a minimal effect on already 
smooth small-scale cloud structure. 
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We strongly recommend that either the temporal radar sampling be increased so that the 
interpolation becomes unnecessary or that the reflectivity profiles be archived at a 
resolution which is dynamically as well as radiatively meaningful. 

 
In contrast, the large-scale transition is apparently real and probably related to the scalebreaks observed 
in reflected (Austin et al. 1999) and transmitted (Savigny et al. 2002) radiance fields at several tens of 
kilometers.  The likely microphysical explanation for this scale-break is the cap imposed on liquid water 
path, hence its variability, in stratus layers by the onset of efficient drizzle production.  This process is 
still poorly understood. 
 
The higher layers exhibit just two scaling regimes: the same artificially smoothed regime as for the low 
levels, and a long essentially flat regime (for the wavelet coefficient).  This corresponds to a �“1/f�” 
(sometimes described as �“flicker noise�”) spectrum.  Interestingly, the same scaling was observed by 
Yano et al (2001) in meso-scale studies of various fields from tropical Ocean Global Atmosphere-
Coupled Ocean Atmosphere Response Experiment soundings that pertain to tropical convection.  The 
change in scaling with height emphasizes the statistical anisotropy and heterogeneity of cloudiness. 
 
2D Correlations in a Solar-Channel Cloud Scene from the 
Multispectral Thermal Imager 
 
We now turn to data from MTI, a high-resolution push-broom imaging spectro-radiometer with state-of-
the-art calibration (especially in the thermal IR channels).  In the visible/near-IR spectral region of 
interest here, the pixels have a mere 5 m footprint (better resolution is now commercially available, but 
only in pan-chromatic mode).  We investigated a completely cloud covered scene of opportunity, which 
is very smooth across the whole image.  MTI�’s focal plane has three sensor chip arrays (SCAs) that 
build up the complete swath.  The most striking feature of the image (not illustrated) is indeed the two 
boundaries between SCAs.  Since the different SCAs cannot be inter-calibrated at these high radiance 
values, we analyze them separately. 
 
Figure 6 shows wavelet energy spectra based on the 2D Haar transform in Eq. (1) and Figure 1 for the 
three SCAs.  Over these scales (5 m to 1.3 km), we expected a very smooth radiance field due to the 
horizontal transport of photons across many pixel scales via multiple scattering.  This �“radiative 
smoothing�” has been quantified by Marshak et al. (1995) and others.  We therefore anticipate H to be 
quite close to unity.  This makes the scale-break in Figure 6 around 22 pixels (20 m), rather intriguing.  
We find the expected H value at larger scales and a negative H, characteristic of stationary noise, at 
smaller scales.  The turn-around in wavelet energy occurs where signal equals noise.  Note that, in this 
study, �“signal�” means the diminutive wavelet coefficients for a smooth field, not the overall photon 
counts, while �“noise�” (whatever its instrumental source may be) is amplified by taking differences of 
large quantities to compute the wavelet coefficient. 
 
The origin of this detector noise is not fully understood.  It is believed to be traceable to the 
extrapolation of radiometric calibration data gathered for relatively dark targets to the unusually 
bright�—and indeed inadvertent�—target in this cloudy image. 

9 



Twelfth ARM Science Team Meeting Proceedings, St. Petersburg, Florida, April 8-12, 2002 

 
 
Figure 6.  Second-order spatial statistics for MTI cloud data.  Wavelet analysis of the x-variability is 
performed for SCA 1 (solid line), SCA 2 (dotted line), SCA 3 (dashed line).  The other 2D wavelets 
illustrated in Figure 1, give similar results. 
 
We recommend that in cloud studies using MTI data the bright reflected radiances be averaged over 
scales of at least 4 pixels (in each direction) to obtain noise-free increment metrics such as wavelet 
coefficients.  This brings its effective resolution close to that of LANDSAT (30 m pixels).  However, 
contrary to LANDSAT�’s propensity to saturate at a DN value of 255 in cloudy pixels, MTI�’s broader 
dynamic range and 12-bit digitization avoids this pitfall. 
 
Summary 
 
Discriminating between stationary and nonstationary behavior is a non-trivial yet essential task in data 
analysis in the presence of spatial correlations.  Indeed, only the averages of stationary quantities are 
robust.  For instance, geophysical signals from turbulent systems such as clouds are nonstationary; 
increments however are often stationary in this case over a large range of scales. 
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We have argued that wavelet transforms, especially in their semi-discrete incarnation with a cunningly 
non-standard normalization convention, lead to improvements over Fourier- and structure-function 
analyses in this key task. 
 
We have analyzed ground-based/active and satellite/passive remote sensing data on stratus cloud layers 
with semi-discrete wavelet transforms.  For simplicity, the piece-wise constant Haar wavelet was used in 
the 1D analysis of mm-radar transects, and its extension to 2D by tensor products for the satellite 
imagery.  We confirmed the existence of well-known scaling laws and a lesser-known scale-break that 
terminates the long-range correlations in cloud structure at a few tens of kilometers. 
 
Our most interesting finding is that scale-breaks in wavelet energy spectra can also be used to diagnose 
problems in the data, unsuspected artifacts.  In this study alone, we found a deficit in variance (traceable 
to human intervention) in MMCR data and an excess of variance (traceable to an instrumental noise) in 
MTI data.  In the former case, we conjure up situations of direct relevance to the ARM Program were 
very misleading conclusions can be drawn from seemingly natural comparisons between models or other 
sources of data.  Our recommendation to avoid these pitfalls is to archive MMCR data without 
interpolation, or to increase the sampling as needed. 
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