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Main Text 
 
Mechanics is an area of physics that studies the motions of material objects.  
The topic of this article is classical mechanics, i.e., mechanics that does not use 
theory of relativity and quantum theory.  Although classical mechanics does not 
describe reality adequately for very large speeds or very small distances, it is an 
active area of physics, with important recent developments and innumerable 
practical applications.  Moreover, ideas that were first developed within the 
framework of classical mechanics turned out to be very fruitful in many other 
areas of physics.  In this article we focus on some important concepts of 
classical mechanics, presenting them in the chronological order of their 
introduction.  For a detailed account of the history of classical mechanics until 
the 1950’s we recommend the monograph [1].   
 
Pre-Newtonian physics 
 
The roots of classical mechanics are in antiquity.  It flourished in ancient 
Greece, in particular, in the works of Aristotle (384-322 BC).  Aristotelian 
scientific doctrines had profound influence on the scientific thought until the 
times of Galileo and Newton.  Ancient scientists discovered some simple 
mechanical laws (i.e., the law of buoyancy), realized that the Earth had a 
spherical shape and were able to measure its radius.   
 
The modern development of classical mechanics started in the 1400’s and was 
related with the name of Nicolaus Copernicus (1473-1543), who challenged the 
geocentric planetary system of Aristotle and Ptolemy (Claudius Ptolemaeus, c. 
90-c. 168 AD).  Free of the stifling influence of Aristotelian ideas, observational 
astronomy developed quickly, culminating in the experimental discovery of the 
three laws of planetary motion of Johannes Kepler (1571-1630).  In the works of 
Galileo Galilei (1564-1642), René Descartes (1596-1650), and Christiaan 
Huygens (1629-1695), reliance on observational or experimental evidence were 
emphasized rather than pure reasoning.   
 



Quantitative period of classical mechanics 
 
The foundations of our present understanding of classical mechanics were laid 
by Isaac Newton (1643-1727) in his magisterial treatise Philosophiae Naturalis 
Principia Mathematica (“Mathematical Principles of Natural Philosophy”), 
originally published in 1686; see the annotated edition [2].  Using the three laws 
of mechanics formulated in Principia together with his law of gravitation, 
Newton was able to derive the laws of Kepler.   
 
To describe the rate of change of physical quantities, Newton developed 
differential and integral calculus (at the same time as, and independently of, 
Gottfried Leibniz (1646-1716))—a mathematical theory of enormous 
importance.  In Newtonian mechanics, the motion of an object is governed by 
ordinary differential equations that express its acceleration (the rate of change of 
its velocity) in terms of the mass of the object and the forces acting on it.  The 
entire subsequent development of classical mechanics is based on the 
understanding of the mathematical structures behind Newton’s theory and its 
relation with other areas of mathematics and physics.   
 
At the very foundation of Newton’s theory of mechanics are such fundamental 
concepts as space, time, force, matter, mass.  As it is not possible to discuss here 
these notions in depth, we only direct the reader to [3], and proceed to the post-
Newtonian development of classical mechanics.   
 
Variational principles and first steps towards geometrization of mechanics 
 
Pierre de Fermat (1601-1665) showed that Snell’s law of refraction of light can 
be derived from the postulate that, when traveling from one point to another, a 
light ray follows the path that minimizes the travel time.  Pierre-Louis de 
Maupertuis (1698-1759) suggested that in the realm of mechanical phenomena 
the situation is similar—namely, there exists certain quantity, called action, that 
is minimized in mechanical processes.  He interpreted this as a manifestation of 
the wisdom of God, who does everything in the most efficient way.  The vague 
(and mathematically incorect) ideas of Maupertuis were put on a firm 
mathematical ground by Leonard Euler (1707-1783), Joseph-Louis Lagrange 
(1736-1813), William Hamilton (1805-1865), and Carl Jacobi (1804-1851).  
Given the initial and the final configurations of the mechanical system (i.e., the 
initial and final positions and velocities of all particles constituting the system), 
the variational principle states that the evolution of the system between the 
initial and the final moments of time is such that the action of the system is 
extremal (that is, minimal or maximal).  The action is expressed through a 
function of the time and the current positions and velocities of the particles 
called the Lagrangian of the system.  From the fact that the evolution of the 



system is an extremum of the action, one can derive ordinary differential 
equations, called the Euler-Lagrange equations, governing the temporal 
evolution of the system.  If one starts with the Lagrangian of a physical system, 
the corresponding Euler-Lagrange equations are the Newton’s equations of 
motion of the system.   
 
Lagrange’s description of a physical system has several advantages over the 
description of Newton.  For the working physicist, writing down the action is 
usually easier than writing down Newton’s equations.  The symmetries of the 
system (see below) are more clearly visible from the Lagrangian of the system 
rather than from Newton’s equations.  Perhaps most importantly, Lagrange’s 
approach relies heavily on the geometry of the space of coordinates and 
velocities of the system.   
 
Lagrange’s formalism is especially useful if the system is constrained.  A simple 
example of a constrained system is two point particles connected by a rod of 
constant length; the whole system is free to move in three-dimensional space.  
Since each particle has three coordinates, in the absence of the rod the position 
of the system would be described by the total of six functions of time (giving all 
the coordinates of the particles at each moment of time).  The rod, however, 
imposes the constraint that the distance between the particles should be the same 
at each moment.  Because of this constraint, the position of the particles is 
described by only five functions of time.   
 
Hamilton’s equations and symplectic geometry 
 
Another big step in the interpretations of the laws of classical mechanics was 
their reformulation as the so-called canonical equations of Hamilton.  Besides 
their inherent importance for solving concrete physical problems, these 
equations provided a completely new way of thinking about the geometry 
behind the dynamics of the system.  In this formalism, the space where the 
evolution of a mechanical system takes place is the so-called phase space—a 
space of even dimension where half of the dimensions give the position and the 
other half give the corresponding momenta of the particles (in high school 
physics the momentum of a point object is the product of its mass and its 
velocity, but in general the definition of momentum is more complicated).  
Hamilton’s canonical equations then imply that the phase space of a physical 
system is a symplectic manifold, i.e., an even-dimensional space endowed with a 
special geometric structure called a symplectic form.  The state of the physical 
system at a given moment of time corresponds to a point in this space, and the 
temporal evolution of the system with time is described by the motion of this 
point.  A phase space trajectory is a curve in the phase space of a physical 
system that describes the evolution of the system with time (from mathematical 



point of view, a phase space trajectory is a solution of the Hamilton’s canonical 
equations).  For each point in the phase space, there is only one phase space 
trajectory passing through it. This geometric description flourished in the 19th 
and 20th centuries, and is the theoretical foundation of our present 
understanding of classical mechanics.  For details and references see the modern 
overview [4] and the growing body of online information Scholarpedia [5].   
 
Symmetries and conservation laws 
 
Among the most important ideas in mechanics (and in physics in general) is the 
connection of the symmetries of the system with the existence of conserved 
quantities, i.e., quantities that do not change in time (see the contribution of 
Belot in [3]).  For example, from the plausible assumption that time is 
homogeneous (i.e., that the evolution of a physical system from certain initial 
conditions does not depend on the initial moment when we let the system 
evolve), one can derive the law of conservation of energy.  These ideas were 
generalized in early 20th century by Emmy Noether (1882-1935) who 
formulated a general mathematical theorem relating symmetries and 
conservation laws.  Together with the modern geometric methods of mechanics 
(especially taking into account the symplectic geometry behind Hamilton’s 
equations) and an area of mathematics called “group theory,” these ideas 
provide a method for reduction of physical systems with symmetry.  The 
reduction procedure eliminates the redundant coordinates from the original 
phase space of the system and replaces the original phase space with a phase 
space with smaller dimension which describes the evolution of the system in the 
most efficient way (see [4], Chapter 3).   
 
Theory of dynamical systems: a neo-qualitative period of classical 
mechanics   
 
A radically new point of view on classical mechanics was developed in the 
studies of Henri Poincaré (1854-1912) culminating in his 3-volume magnum 
opus Les méthodes nouvelles de la mécanique céleste (“New Methods of 
Celestial Mechanics”), published in the last decade of the 19th century.  Instead 
of concentrating on one particular phase space trajectory, Poincaré proposed to 
study the behavior of all possible phase space trajectories of the physical system, 
i.e., all possible evolutions of the system starting with all allowed initial 
conditions.  The family of all phase space trajectories in the phase space of the 
system is called the phase portrait of the system [5].  Within this approach, one 
in interested in questions like “Does the system have periodic solutions?”, or 
“Are the velocities of the particles bounded?”, or the important question “If the 
system is perturbed slightly, does the behavior of its solutions differ 
significantly from the behavior of the solutions of the original system?”  



Poincaré realized the importance of such qualitative questions, and understood 
that the answer to such questions is intimately related to the global geometric 
properties of the phase space of the system.  These new ideas were advanced 
significantly in the 1920’s by George Birkhoff (1884-1944).   
 
Poincaré and Birkhoff enriched mechanics with new goals and new tools; the 
area of physics and mathematics created in their works was called theory of 
dynamical systems.  This theory emphasized the importance of the qualitative 
theory of differential equations—a field of mathematics virtually nonexistent 
before that.  Instead of solving the equations explicitly, theory of dynamical 
systems is interested in the behavior of whole sets of trajectories in the phase 
space, in particular in their stability.  In connection with this, it studies the 
bifurcations of the system, i.e., the abrupt changes in the phase portrait caused 
by changes of the values of the parameters of the system.  The qualitative 
features of the phase portrait of the system are closely related to the existence of 
certain geometric objects in the phase space, e.g., invariant manifolds.  An 
invariant manifold is a surface in the phase space of the system such that each 
phase space trajectory starting from a point on this surface stays on the same 
surface forever.  Clearly, the presence of an invariant manifold is an obstruction 
to the possible qualitative behavior of the system because phase space 
trajectories are not allowed to cross an invariant manifold.   
 
Another fundamental innovation in theory of dynamical systems is that, since it 
studies the behavior of whole sets of phase space trajectories, it has to employ 
probabilistic concepts in dealing with the physical system.  This makes a 
connection with statistical mechanics—an area of physics that studies the 
properties of systems consisting of a very large number of particles, so that the 
particles cannot be described individually (examples of such systems are gas in a 
container or a crystal).  Poincaré and Birkhoff were among the creators of a new 
field of physics and mathematics called ergodic theory, whose main object of 
interest is the evolution of the probabilities related to the description of the 
system [5].  The probabilistic approach is also related with information theory 
which studies the quantification of information, and is of great importance for 
modern communication systems.   
 
Further developments in the theory of dynamical systems 
 
Initially created by Poincaré within the framework of celestial mechanics, theory 
of dynamical systems evolved quickly, often stimulated by the rapid 
development of science and technology in the 20th century.  For a riveting 
popular history of dynamical systems see [6], and a scholarly analysis can be 
found in [7].   
 



In the early days of radio engineering, Balthasar van der Pol (1889-1959) 
noticed strange irregular noises in experiments with radio circuits, which 
motivated mathematical studies by Mary Cartwright (1900-1998), John 
Littlewood (1885-1977) and Norman Levinson (1912-1975) in the 1940s.  These 
studies culminated in the discovery by Stephen Smale (b. 1930) in the mid-
1960’s of a structure that is at the heart of modern theory of dynamical systems, 
which is now called the Smale horseshoe [5].  If a dynamical system has a 
horseshoe, then it exhibits complicated behavior (“chaos”).   
 
A fundamental mathematical result on the behavior of Hamiltonian dynamical 
systems (i.e., dynamical systems described by Hamilton’s canonical equations) 
is the celebrated KAM theorem named after Andrey Kolmogorov (1903-1987), 
Vladimir Arnold (b. 1937), and Jürgen Moser (1928-1999), who proved it in the 
1960s.  It is concerned with the persistence of certain types of motions in a 
completely integrable Hamiltonian system under small perturbations.  The 
behavior of the phase space trajectories in a completely integrable Hamiltonian 
system is very orderly—each phase space trajectory belongs to a torus (a 
particular kind of a surface) in the phase space of the system.  The KAM 
theorem states roughly that, under suitable assumptions, most of these invariant 
tori survive (and are only slightly deformed) when the system is slightly 
perturbed, hence the “order” in an integrable system is not destroyed completely 
by small perturbations, but instead the “disorder” occurs in the system gradually 
as the perturbation becomes stronger [5].     
 
The advent of modern computing devices influenced deeply the development of 
modern physics.  One of the first computers, MANIAC I, was used in the early 
1950s by Enrico Fermi (1901-1954), John Pasta (1918-1984), and Stanislaw 
Ulam (1909-1984), who studied numerically a one-dimensional chain of 
particles linked by springs (where the springs behaved slightly nonlinearly)—a 
one-dimensional analogue of atoms in a crystal.  The results of their numerical 
simulations were strikingly different from what the scientists expected, thus 
showing that some very foundational ideas in physics (related to ergodic theory) 
had to be reconsidered [5].   
 
Another remarkable discovery came from meteorology in 1963, with the 
publication of the famous paper “Deterministic nonperiodic flow” of Edward 
Lorenz (1917-2008).  Lorenz modeled on a computer the phenomena in the 
atmosphere when it is heated from below by the Earth surface.  He used a 
system of three nonlinear differential equations that have the feature that, due to 
the dissipation in the system (i.e., the loss of energy due to the viscosity of the 
air), as time passes, a three-dimensional domain tends with time to a set of lower 
dimension called an attractor.  From the numerical studies of the attractor in the 
Lorenz system, it looked like it is a set with a complicated geometric structure.  



The dimension of the attractor seemed to be greater than two but smaller than 
three; such objects were called strange attractors (the word “strange” is 
sometimes used in this context with a different meaning).  The concept of 
objects of non-integer dimension was studied in pure mathematics since the 
early 20th century, notably by Felix Hausdorff (1868-1942).  The presence of an 
attractor in the Lorenz system of differential equations made it clear that objects 
of fractional dimensions are non only a mathematical curiosity, but occur 
naturally in physical systems.  Usually such objects coming from physics reveal 
self-similarity, i.e., a portion of the object looks approximately like the whole 
object under an appropriate magnification.  The ubiquity of such object in 
natural phenomena was brought to the mainstream mathematics and physics by 
Benoît Mandelbrot (b. 1924), who named them fractals.  Today fractals are 
commonplace in natural sciences and engineering, and there are many concepts 
of dimension that are useful in different contexts [5].   
 
It turned out that the Lorenz attractor has also the property that the distance 
between two nearby points on the attractor grows exponentially fast with time, 
or, in technical terms, exhibits sensitive dependence on initial conditions.  This 
sensitive dependence—metaphorically called the butterfly effect by Lorenz [5]—
gives an idea why there are fundamental difficulties in long-term weather 
prediction.   
 
The attractor observed numerically by Lorenz turned out to resist rigorous 
mathematical analysis, so John Guckenheimer (b. 1945) introduced a “geometric 
model” for the Lorenz equations—a system that exhibits the same features as the 
ones observed numerically for the Lorenz equations, but is simpler and hence 
amenable to rigorous analysis.  The existence of an attractor in such geometric 
models was proved rigorously, and its properties were studied extensively.  
However, the question whether the attractor in the original Lorenz equations 
indeed exists remained open.  In 1997 Smale posed this question as one of the 
18 “mathematical problems for the next century”.  The question was answered 
positively the very next year by Warwick Tucker (b. 1970), who also proved 
rigorously that the attractor is robust, i.e., it is not destroyed by small changes in 
the coefficients in the Lorenz system.  Tucker’s proof was computer-assisted, 
i.e., it used a computer for numerical computations, but—unlike in the 
traditional way computers are used—kept track of all possible numerical errors, 
which made his proof mathematically rigorous.  This episode provides an 
interesting example of the interactions of modern mathematics and computing.   
 
Determinism in classical mechanics 
 
Newton’s laws are evolution equations, i.e., if one knows the masses, positions, 
and velocities of all objects at some moment, as well as the forces of interaction 



between the objects, the whole subsequent motion of the bodies is completely 
determined (i.e., can be calculated with arbitrary accuracy).  The uniqueness of 
the evolution in classical mechanics is the basis of the determinism of Pierre-
Simon Laplace (1749-1827).  If the world is governed by the laws of classical 
mechanics, then Laplace’s determinism holds and there is no free will.  There 
are, however, some situations when the equations of classical mechanics admit 
non-unique solutions, for example when the force is proportional to the square 
root of the velocity (see the example of Hutchinson in the article of Bishop in 
[3]).  Theory of dynamical systems, in particular, the sensitive dependence on 
initial conditions, the probabilistic description of the behavior of a physical 
system, and the connections with statistical mechanics pose a host of new 
problems related to determinism.   
 
Classical mechanics and experiment; connections with other branches of 
science 
 
Since mechanics is a natural science, the experiment is the ultimate test for 
correctness of its basic principles.  One of its early triumphs is the prediction of 
the existence and location of the planet Neptune by John Adams (1819-1892) 
and Urbain Leverier (1811-1877) from the observed irregularities in the motion 
of Uranus caused by Neptune.  Classical mechanics is the theory behind the 
functioning of any mechanical device, from a bicycle to an airplane.   
 
A recent spectacular success of theory of classical mechanics was the rescue of a 
Japanese lunar mission in 1991.  The spacecraft Hiten was orbiting the Earth 
with only about 10% of the fuel necessary for it to go to an orbit around the 
Moon in the “standard” way.  Using the subtle gravitational interactions between 
the Earth and the Moon, Edward Belbruno (b. 1951) succeeded in changing the 
trajectory of Hiten to send it to an orbit around the Moon, thus salvaging the 
mission.   
 
Classical mechanics is the oldest area of physics, and its ideas and methods have 
influenced deeply all other areas of modern physics.  The variational principles 
and the ideas of symmetries and conservation laws developed for the needs of 
classical mechanics but have been used extensively in all areas of modern 
physics, and have often been the main guiding principles in deriving new 
equations or rethinking the old ones.  The equations of mechanics of Hamilton 
and Hamilton-Jacobi were used in developing the quantum mechanics.  The 
principle of relativity of Galileo was one of the main ideas in theory of 
relativity.   
 
Many developments in mathematics have been motivated by the needs of 
mechanics.  The classical example is Newton’s invention of calculus.  Topology 



(originally named “analysis situs”) is a large branch of modern mathematics that 
was first developed by Poincaré in his work on celestial mechanics.  Modern 
theory of differential equations was revitalized in the 20th century thanks to the 
problems posed by the theory of dynamical systems.  Modern mechanics is also 
intimately related to geometry, group theory, and other mathematical disciplines.  
As mentioned above, theory of dynamical systems provides connections with 
statistical mechanics, ergodic theory, information theory, dimension theory, etc.   
 
Theory of dynamical systems expanded the goals of classical mechanics in new 
directions.  While, before, the main problem was to solve the equations 
governing the temporal evolution of the system for any particular choice of 
initial conditions, theory of dynamical systems tries to understand the 
mechanism responsible for the behavior of the physical system, i.e., to 
understand why the system is behaving in a certain way.  To this end, theory of 
dynamical systems often employs simple models that have similar behavior as a 
complicated system, and analyzes in detail the model—the geometric models for 
the Lorenz equations mentioned above are an example of this approach.  
Another such example is the suggestion of the biologist Robert May (b. 1936) in 
mid-1970s to use simple equations to model complicated ecological phenomena 
since, despite their simplicity, the solutions of these equations can exhibit a 
complicated behavior.  Around the same time, Mitchell Feigenbaum (b. 1944) 
studied numerically the so-called period-doubling bifurcations of one-
dimensional functions, and noticed that certain quantities are universal, i.e., that 
functions can be divided into classes such that these quantities have the same 
value.  Feigenbaum proposed an ingenious explanation of his observations that 
was based on renormalization—an idea borrowed from the arsenal of statistical 
physics.  Namely, he interpreted his numerical results as a manifestation of some 
phenomena that occur in the space of functions—the space where the functions 
“live”—which is infinitely-dimensional!  This suggestion spurred an 
unprecedented surge of activity and has been employed—with appropriate 
modifications—to many complicated physical phenomena, deepening our 
understanding of Nature.   
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