Derivation of the Fokker-Planck equation

Fokker-Planck equation is a partial differential equation for the transition density p(x,t|y, s) of the
stochastic process X; satisfying the SDE

dX = f(t, Xy) dt + g(t, X;) dBy (1)

where B; is a Wiener process (and its generalized derivative, £(t) = dB;/dt is a Gaussian white
noise). We discretize the SDE (1) as follows:

AXt = f(ta Xt) At + g(t7 Xt) ABt 5 (2)

where AXt = Xt-i—At - Xt and ABt = Bt—i—At — Bt-
Preparation: using that E[AB;] = 0 and E[(AB;)?] = At and using the independence of the
increments of the Wiener process, we obtain

E[f(t, X)At|X; = 2] = E[f(t, X))| X¢ = 2] At = f(t,2) At ; (3)
E[g(t, X;)AB| Xy = 2] = g(t,2) E[AB|X; = 2] = g(t, 2) E[AB] =0 ; (4)
E [g9(t, Xe)*(AB)?|Xy = 2] = g(t,2)° E [(ABy)*| X¢ = 2]
= g(t,2)’E [(AB)?] = g(t,2)* At ; (5)
using (3), (4) and (5), we can find the conditional moments of the jumps of X;:
E[AX:|X; = 2] = E[f(t, Xo) At + g(t, X)) AB| Xy = 2] = f(t,2) At ; (6)
and
E[(AX)?X; = 2]
=E [f(t, X0)? (A2 + 2 f(t, X¢) g(t, X¢) ALAB; + g(t, X3)? (ABy)?| Xy = 2]
= g(t, 2)? At + o(At) ; (7)
note that these formulas can be rewritten as
/(m ) pl@t+ At t)de = B [Xpsar — Xi| X = 2] = E[AX)|X, = 2] = f(t,2) AL,  (8)
and similarly,

/(:U — 22 p(z,t + At|z,t)dz = E [(AXt)2|Xt =z] = g(t, 2)2 At + o(At) . (9)

To derive the Fokker-Planck equation, we write the Chapman-Kolmogorov equation for s < ¢, and
At > 0:

plast + Atly,s) = [ ol + Al 1) sty ds (10)



Multiply (10) by a smooth test function R(x) and integrate both sides with respect to  to obtain
the “smeared” Chapman-Kolmogorov equation

/d:z: R(z) p(x,t + Atly,s) = /d:c R(z) /p(m,t + At|z,t) p(z,tly, s)dz . (11)
In the right-hand side of (11), expand R(z) around z:
R(z) = R(2)+ R(2) (2 2) + gR(2) (= 2" + -

then in the right-hand side of (10) we will have

/ R(z) pla, t + At]z, 1) da
- / {R(z) FR() (- 2) 4+ %R”(@ (@— )24 } (@t + Atlz, 1) da
_ R(z)/p(m,t—l— At|z, 1) da
+R/(2) /(a: —2) p(x,t + At]z,t) dx
LR(2) /(m 22 p(ayt+ Atz ) de

— R(z) + R(2) f(t, 2) At + %R”(z) g(t,2)> At + o(At) | (12)

where we have used the normalization [ p(x,t+ At|z,¢)dz =1 and the expressions (8) and (9).

In the left-hand side of (11), we expand the short-time transition density, and then relabel the
integration variable:

/R(:J;) plz,t + Atly,s)dz = /R p(x, tly, s) + Oep(x, tly, s) At + o(At)] dx

= /R(z) p(z,tly,s)dz + At/R(z) Op(z,tly, s)dz + o(At) . (13)

Now we plug (12) and (13) in the “smeared” Chapman-Kolmogorov equation (11) to obtain

/R p(z,tly,s)dz + At/R(z) Op(z,tly, s) + o(At) dz
:/R(z) p(z,tly, s)dz

+At/ {R’(z)f(t, 2) + ;R/’(z)g(t,z)2} p(z,tly, s)dz + o(At) . (14)

Canceling the equal terms in the left- and the right-hand side, collecting all the terms of order At
and neglecting the terms of order o(At), we obtain

0= [ S R(2) Oep(z,tly, ) — | R () f(t, Z)+1Pu"(2)9(t7 2)%| p(z,tly.s) ¢ dz .
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Finally, we integrate the terms containing derivatives of R(z) by parts to obtain
1
0= [ R { Doty ) + 8- L£02) etly] = 50 [o(t 2 oot )] i

Since this equation holds for any choice of test function R(z), we obtain the following equation for
the transition density, which is called the Fokker-Planck equation:

1
op(z,tly,s) = =0, [f(t,2) p(2, t]y, s)] + 5022 l9(t,2)? p(z,tly, s)] (15)
which is often written in the form
1
atp('z7t|y7 5) = _azf(tv Z) + iazzg(t’ 2)2 p(Z,t|y, S) ’ (16)

where it is understood that the differentiation with respect to z acts on everything that is to the
right of it. The initial condition for the conditional density is

plzsly, s) = 6(z—y) .



