
Derivation of the Fokker-Planck equation

Fokker-Planck equation is a partial differential equation for the transition density ρ(x, t|y, s) of the
stochastic process Xt satisfying the SDE

dXt = f(t,Xt) dt+ g(t,Xt) dBt , (1)

where Bt is a Wiener process (and its generalized derivative, ξ(t) = dBt/dt is a Gaussian white
noise). We discretize the SDE (1) as follows:

∆Xt = f(t,Xt) ∆t+ g(t,Xt) ∆Bt , (2)

where ∆Xt := Xt+∆t −Xt and ∆Bt := Bt+∆t −Bt.

Preparation: using that E[∆Bt] = 0 and E[(∆Bt)
2] = ∆t and using the independence of the

increments of the Wiener process, we obtain

E [f(t,Xt)∆t|Xt = z] = E [f(t,Xt)|Xt = z] ∆t = f(t, z) ∆t ; (3)

E [g(t,Xt)∆Bt|Xt = z] = g(t, z)E [∆Bt|Xt = z] = g(t, z)E [∆Bt] = 0 ; (4)

E
[
g(t,Xt)

2(∆Bt)
2|Xt = z

]
= g(t, z)2 E

[
(∆Bt)

2|Xt = z
]

= g(t, z)2 E
[
(∆Bt)

2
]

= g(t, z)2 ∆t ; (5)

using (3), (4) and (5), we can find the conditional moments of the jumps of Xt:

E [∆Xt|Xt = z] = E [f(t,Xt)∆t+ g(t,Xt)∆Bt|Xt = z] = f(t, z) ∆t ; (6)

and

E
[
(∆Xt)

2|Xt = z
]

= E
[
f(t,Xt)

2 (∆t)2 + 2 f(t,Xt) g(t,Xt) ∆t∆Bt + g(t,Xt)
2 (∆Bt)

2|Xt = z
]

= g(t, z)2 ∆t+ o(∆t) ; (7)

note that these formulas can be rewritten as∫
(x− z) ρ(x, t+ ∆t|z, t) dx = E [Xt+∆t −Xt|Xt = z] = E [∆Xt|Xt = z] = f(t, z) ∆t , (8)

and similarly,∫
(x− z)2 ρ(x, t+ ∆t|z, t) dx = E

[
(∆Xt)

2|Xt = z
]

= g(t, z)2 ∆t+ o(∆t) . (9)

To derive the Fokker-Planck equation, we write the Chapman-Kolmogorov equation for s < t, and
∆t > 0:

ρ(x, t+ ∆t|y, s) =

∫
ρ(x, t+ ∆t|z, t) ρ(z, t|y, s) dz . (10)
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Multiply (10) by a smooth test function R(x) and integrate both sides with respect to x to obtain
the “smeared” Chapman-Kolmogorov equation∫

dxR(x) ρ(x, t+ ∆t|y, s) =

∫
dxR(x)

∫
ρ(x, t+ ∆t|z, t) ρ(z, t|y, s) dz . (11)

In the right-hand side of (11), expand R(x) around z:

R(x) = R(z) +R′(z) (x− z) +
1

2
R′′(z) (x− z)2 + · · ·

then in the right-hand side of (10) we will have∫
R(x) ρ(x, t+ ∆t|z, t) dx

=

∫ {
R(z) +R′(z) (x− z) +

1

2
R′′(z) (x− z)2 + · · ·

}
ρ(x, t+ ∆t|z, t) dx

= R(z)

∫
ρ(x, t+ ∆t|z, t) dx

+R′(z)

∫
(x− z) ρ(x, t+ ∆t|z, t) dx

+R′′(z)

∫
(x− z)2 ρ(x, t+ ∆t|z, t) dx

= R(z) +R′(z) f(t, z) ∆t+
1

2
R′′(z) g(t, z)2 ∆t+ o(∆t) , (12)

where we have used the normalization
∫
ρ(x, t+ ∆t|z, t) dx = 1 and the expressions (8) and (9).

In the left-hand side of (11), we expand the short-time transition density, and then relabel the
integration variable:∫

R(x) ρ(x, t+ ∆t|y, s) dx =

∫
R(x) [ρ(x, t|y, s) + ∂tρ(x, t|y, s) ∆t+ o(∆t)] dx

=

∫
R(z) ρ(z, t|y, s) dz + ∆t

∫
R(z) ∂tρ(z, t|y, s) dz + o(∆t) . (13)

Now we plug (12) and (13) in the “smeared” Chapman-Kolmogorov equation (11) to obtain∫
R(z) ρ(z, t|y, s) dz + ∆t

∫
R(z) ∂tρ(z, t|y, s) + o(∆t) dz

=

∫
R(z) ρ(z, t|y, s) dz

+∆t

∫ {
R′(z) f(t, z) +

1

2
R′′(z) g(t, z)2

}
ρ(z, t|y, s) dz + o(∆t) . (14)

Canceling the equal terms in the left- and the right-hand side, collecting all the terms of order ∆t
and neglecting the terms of order o(∆t), we obtain

0 =

∫ {
R(z) ∂tρ(z, t|y, s)−

[
R′(z) f(t, z) +

1

2
R′′(z) g(t, z)2

]
ρ(z, t|y, s)

}
dz .
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Finally, we integrate the terms containing derivatives of R(z) by parts to obtain

0 =

∫
R(z)

{
∂tρ(z, t|y, s) + ∂z [f(t, z) ρ(z, t|y, s)]− 1

2
∂zz
[
g(t, z)2 ρ(z, t|y, s)

]}
dz .

Since this equation holds for any choice of test function R(z), we obtain the following equation for
the transition density, which is called the Fokker-Planck equation:

∂tρ(z, t|y, s) = −∂z [f(t, z) ρ(z, t|y, s)] +
1

2
∂zz
[
g(t, z)2 ρ(z, t|y, s)

]
, (15)

which is often written in the form

∂tρ(z, t|y, s) =

[
−∂zf(t, z) +

1

2
∂zzg(t, z)2

]
ρ(z, t|y, s) , (16)

where it is understood that the differentiation with respect to z acts on everything that is to the
right of it. The initial condition for the conditional density is

ρ(z, s|y, s) = δ(z − y) .
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