
Theoretical foundations of Gaussian quadrature

1 Inner product vector space

Definition 1. A vector space (or linear space) is a set V = {u,v,w, . . .} in which the
following two operations are defined:

(A) Addition of vectors: u + v ∈ V , which satisfies the properties

(A1) associativity: u + (v + w) = (u + v) + w ∀ u, v, w in V ;

(A2) existence of a zero vector: ∃ 0 ∈ V such that u + 0 = u ∀u ∈ V ;

(A3) existence of an opposite element: ∀u ∈ V ∃(−u) ∈ V such that u + (−u) = 0;

(A4) commutativity: u + v = v + u ∀ u, v in V ;

(B) Multiplication of a number and a vector: αu ∈ V for α ∈ R, which satisfies the
properties

(B1) α(u + v) = αu + αv ∀ α ∈ R, ∀u,v ∈ V ;

(B2) (α + β)u = αu + βu ∀ α, β ∈ R, ∀u ∈ V ;

(B3) (αβ)u = α(βu) ∀ α, β ∈ R, ∀u ∈ V ;

(B4) 1u = u ∀u ∈ V .

Definition 2. An inner product linear space is a linear space V with an operation (·, ·)
satisfying the properties

(a) (u,v) = (v,u) ∀ u, v in V ;

(b) (u + v,w) = (u,w) + (v,w) ∀ u, v, w in V ;

(c) (αu,v) = α(u,v) ∀α ∈ R, ∀ u, v, w in V ;

(d) (u,u) ≥ 0 ∀u ∈ V ; moreover, (u,u) = 0 if and only if u = 0.

Example. The “standard” inner product of the vectors u = (u1, u2, . . . , ud) ∈ Rd and
v = (v1, v2, . . . , vd) ∈ Rd is given by

(u,v) =
d∑

i=1

uivi .
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Example. Let G be a symmetric positive-definite matrix, for example

G = (gij) =

 5 4 1
4 7 0
1 0 3

 .

Then one can define a scalar product corresponding to G by

(u,v) :=
d∑

i=1

d∑
j=1

ui gij vj .

Remark. In an inner product linear space, one can define the norm of a vector by

‖u‖ :=
√

(u,u) .

The famous Cauchy-Schwarz inequality reads

|(u,v)| ≤ ‖u‖ ‖v‖ .

Think about the meaning of this inequality in R3.

Exercise. Find the norm of the vector u = (3, 0,−4) using the “standard” inner product
in R3 and then by using the inner product in R3 defined through the matrix G.

A very important example. Consider the set of all polynomials of degree no greater
than 4, where the operations “addition of vectors” and “multiplication of a number and a
vector” are defined in the standard way, namely: if P and Q are such polynomials,

P (x) = p4x
4 + p3x

3 + p2x
2 + p1x + p0 , Q(x) = q4x

4 + q3x
3 + q2x

2 + q1x + q0 ,

then their sum, P + Q is given by

(P + Q)(x) = (p4 + q4)x
4 + (p3 + q3)x

3 + (p2 + q2)x
2 + (p1 + q1)x + (p0 + q0) ,

and, for α ∈ R, the product αP is defined by

(αP )(x) = (αp4)x
4 + (αp3)x

3 + (αp2)x
2 + (αp1)x + (αp0) .

Then this set of polynomials is a vector space of dimension 5. One can take for a basis in
this space the set of polynomials

E0(x) := 1 , E1(x) := x , E2(x) := x2 , E3(x) := x3 , E4(x) := x4 .

This, however, is only one of the infinitely many bases in this space. For example, the set of
vectors

G0(x) := x− 1 , G1(x) := x + 1 , G2(x) := x2 + 3x + 3 ,
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G3(x) := −x3 + 3x2 − 4 , G4(x) := x4 − x3 − 2x

is a perfectly good basis. (Note that I called G0, G1, . . ., Gn “vectors” to emphasize that
what is important for us is the structure of vector space and not so much the fact that these
“vectors” are polynomials.) Any vector (i.e., polynomial of degree ≤ 4) can be represented
in a unique way in any basis, for example, the polynomial P (x) = 3x4 − 5x2 + x + 7 can be
written as

P = 3 E4 − 5 E2 + E1 + 7 E0 ,

or, alternatively, as
P = 3 G4 − 3 G3 + 4 G2 − 11 G1 + 6 G0 .

2 Inner product in the space of polynomials

One can define an inner product structure in the space of polynomials in many different
ways. Let Vn(a, b) stand for the space of polynomials of degree ≤ n defined for x ∈ [a, b].
Most of the theory we will develop works also if a = −∞ and/or b = ∞. Let w : [a, b] → R
be a weight function, i.e., a function satisfying the following properties:

(a) the integral
∫ b

a
w(x) dx exists;

(b) w(x) ≥ 0 for all x ∈ [a, b], and w(x) can be zero only at isolated points in [a, b] (in
particular, w(x) cannot be zero in an interval of nonzero length).

We define a scalar product in Vn(a, b) by

(P, Q) :=

∫ b

a

P (x) Q(x) w(x) dx ; (1)

if the interval (a, b) is of infinite length, then one has to take w such that this integral exists
for all P and Q in Vn(a, b). Let Vn(a, b; w) stands for the inner product linear space of
polynomials of degree ≤ n defined on [a, b], and scalar product defined by (1).

Example. The Legendre polynomials are a family of polynomials P0, P1, P2, . . . such that
Pn is a polynomial of degree n defined for x ∈ [−1, 1], with leading coefficients equal to 1
(“leading” are the coefficients of the highest powers of x) and such that Pn and Pm are
orthogonal for n 6= m in the sense of the following inner product:

(Pn, Pm) =

∫ 1

−1

Pn(x) Pm(x) dx .

In other words, the polynomials P0, P1, P2, . . ., Pn constitute an orthogonal basis of the
space Vn(−1, 1; w(x) ≡ 1). Here are the first several Legendre polynomials:

P0(x) = 1 , P1(x) = x , P2(x) = x2−1

3
, P3(x) = x3−3

5
x , P4(x) = x4−6

7
x2+

3

35
, . . . .
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Sometime Legendre polynomials are normalized in a different way:

P̃0(x) = 1 , P̃1(x) = x , P̃2(x) =
1

2
(3x2 − 1) ,

P̃3(x) =
1

2
(5x3 − 3x) , P̃4(x) =

1

8
(35x4 − 30x2 + 3) , . . . ;

check that Pn is proportional to P̃n for all the polynomials given here.

Exercise. Check that each of the first five Legendre polynomials is orthogonal to all other
Legendre polynomials in the example above.

Example. The Hermite polynomials are a family of polynomials H0, H1, H2, . . . such
that Hn is a polynomial of degree n defined for x ∈ R, normalized in such a way that
(Hn, Hn) = 2nn!

√
π and (Hn, Hm) = 0 for n 6= m, where the inner product is defined as

follows:

(Hn, Hm) =

∫ ∞

−∞
Hn(x) Hm(x) e−x2

dx .

In other words, the polynomials H0, H1, H2, . . ., Hn constitute an orthogonal basis of the
space Vn(−∞,∞; e−x2

). Here are the first five Hermite polynomials:

H0(x) = 1 , H1(x) = 2x , H2(x) = 4x2−2 , H3(x) = 8x3−12x , H4(x) = 16x4−48x2+12 .

3 Gaussian quadrature

Theorem 1. Let w be a weight function on [a, b], let n be a positive integer, and let G0,
G1, . . ., Gn be an orthogonal family of polynomials with degree of Gk equal to k for each
k = 0, 1, . . . , n. In other words, G0, G1, . . ., Gn form an orthogonal basis of the inner
product linear space Vn(a, b; w). Let x1, x2, . . ., xn be the roots of Gn, and define

Li(x) :=
n∏

j=1, j 6=i

x− xj

xi − xj

for i = 1, 2, . . . , n .

Then the corresponding Gaussian quadrature formula is given by

I(f) :=

∫ b

a

f(x) w(x) dx ≈ In(f) :=
n∑

i=1

wi f(xi) ,

where

wi :=

∫ b

a

Li(x) w(x) dx .

The formula In(f) has degree of precision exactly 2n − 1, which means that In(xk) = I(xk)
for k = 0, 1, . . . , 2n− 1, but there is a polynomial Q of degree 2n for which In(Q) 6= I(Q).
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