Hint to Exercise 4.2/66

Use that

$$
0 \leq \sin x \leq 1 \quad \text { for } 0 \leq x \leq \frac{\pi}{2}
$$

to obtain that

$$
0 \leq x \sin x \leq x \quad \text { for } 0 \leq x \leq \frac{\pi}{2}
$$

Then use the property that if $f(x) \leq g(x) \leq h(x)$ for every $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x \leq \int_{a}^{b} h(x) d x
$$

Be careful when you multiply both sides of an inequality by the same number/expression - if this number/expression is positive, the inequality is preserved; if this number/expression is positive, the inequality is reversed!

