Hints to Problems 5.2/61 and 5.3/46

The torus is obtained by rotating about the y-axis the circle in the (x, y) plane centered at $(R, 0)$ and with radius r (i.e., described by the equation $(x-R)^{2}+y^{2}=r^{2}$.

By the method of slicing (by planes perpendicular to the y-axis), the volume is given by the integral

$$
\pi \int_{-r}^{r}\left[\left(R+\sqrt{r^{2}-y^{2}}\right)^{2}-\left(R-\sqrt{r^{2}-y^{2}}\right)^{2}\right] d y
$$

To obtain this expression, consider the circle $(x-R)^{2}+y^{2}=r^{2}$ in the (x, y) plane as made up of the graphs of two functions, $x=f(y)$ and $x=g(y)$, the "outside" one given by $f(y)=R+\sqrt{r^{2}-y^{2}}$, and the "inside" one given by $g(y)=R-\sqrt{r^{2}-y^{2}}$ (to obtain these expressions, express x in terms of y from the equation $\left.(x-R)^{2}+y^{2}=r^{2}\right)$.

By the method of cylindrical shells, the volume is given by the integral

$$
\int_{R-r}^{R+r} 2 \pi x \cdot 2 \sqrt{r^{2}-(x-R)^{2}} d x
$$

