Hints to some exercises from Section 7.1

Exercise 20. This is a very tricky one. Recall that

$$
1+\tan ^{2} x=1+\frac{\sin ^{2} x}{\cos ^{2} x}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}
$$

to rewrite $\tan ^{2} x$ as $\frac{1}{\cos ^{2} x}-1$. Then the integral becomes

$$
\int x \tan ^{2} x d x=\int x\left(\frac{1}{\cos ^{2} x}-1\right) d x=\int x \frac{d x}{\cos ^{2} x}-\int x d x
$$

For the first of these integrals use integration by parts with $u=x, v=\tan x$, and then substitution:

$$
\begin{aligned}
\int x \frac{d x}{\cos ^{2} x} & =\int u d v=u v-\int v d u=x \tan x-\int \tan x d x=x \tan x-\int \frac{\sin x}{\cos x} d x \\
& =x \tan x-\int \frac{\sin x}{\cos x} d x=x \tan x+\int \frac{d \cos x}{\cos x}=x \tan x+\ln |\cos x|+C
\end{aligned}
$$

Putting all this together, we obtain

$$
\int x \tan ^{2} x d x=x \tan x+\ln |\cos x|-\frac{x^{2}}{2}+C
$$

Checking the correctness of this formula by differentiating is quite amusing!

Exercise 22. You have to integrate by parts twice. For the first integration by parts set $u=\arcsin ^{2} x, v=x$, then $d v=d x$ and

$$
\int \arcsin ^{2} x d x=\int u d v=u v-\int v d u=x \arcsin ^{2} x-\int x \frac{2 \arcsin x}{\sqrt{1-x^{2}}} d x
$$

where we have used that, by the Chain Rule and the formula for the derivative of $\arcsin x$,

$$
d u=u^{\prime}(x) d x=\frac{d}{d x}\left(\arcsin ^{2} x\right) d x=2 \arcsin x \frac{d}{d x}(\arcsin x) d x=2 \arcsin x \cdot \frac{1}{\sqrt{1-x^{2}}} d x
$$

Then notice that

$$
-\int x \frac{2 \arcsin x}{\sqrt{1-x^{2}}} d x=\int \frac{\arcsin x}{\sqrt{1-x^{2}}} d\left(1-x^{2}\right)=2 \int \arcsin x d \sqrt{1-x^{2}}
$$

and in the last integral use integration by parts.

Exercise 26. Set $u=\ln y, v=2 \sqrt{y}$, and integrate by parts.

Exercise 53. Write $\tan ^{n} x$ as

$$
\tan ^{n} x=\tan ^{n-2} x \tan ^{2} x=\tan ^{n-2} x \frac{\sin ^{2} x}{\cos ^{2} x}=\tan ^{n-2} x \frac{1-\cos ^{2} x}{\cos ^{2} x}=\tan ^{n-2} x\left(\frac{1}{\cos ^{2} x}-1\right) .
$$

