Hints to some exercises from Section 7.1

Exercise 20. This is a very tricky one. Recall that
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to rewrite tan?z as
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For the first of these integrals use integration by parts with v = z, v = tanx, and then
substitution:
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Putting all this together, we obtain
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Checking the correctness of this formula by differentiating is quite amusing!

Exercise 22. You have to integrate by parts twice. For the first integration by parts set
u = arcsin® x, v = z, then dv = dx and

2arcsin
/ar(351n2xd:1::/udv:uv—/vdu:xar051n2x— xﬁdw7
-

where we have used that, by the Chain Rule and the formula for the derivative of arcsin x,
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Then notice that
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and in the last integral use integration by parts.
Exercise 26. Set u = Iny, v = 2,/y, and integrate by parts.
Exercise 53. Write tan™ x as
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