
MATH 3113 – Homework assigned on 11/25/13

Problem 1. A vector space (or linear space) V is a set of elements called vectors with two
operations – addition of two vectors (which takes two vectors, u ∈ V and v ∈ V , and gives their
sum, the vector u+ v ∈ V ), and multiplication of a number and a vector (which takes the number
α ∈ R and the vector u ∈ V , and gives the vector αu ∈ V ). As we learned in class, functions can
be considered as vectors if we define the operations addition of two functions and multiplication of
a number and a function – as you know from middle school (although you did not put it in such
a formal language), for given functions f and g and a number α, the functions f + g and αf are
defined by

(f + g)(x) := f(x) + g(x) , (αf)(x) := α f(x) .

One can endow a vector space with additional structures, like a norm and an inner product. An
inner product is an operation that takes two vectors, u ∈ V and v ∈ V , and gives a number
〈u,v〉 ∈ R; this operation must satisfy the properties

(a) symmetry: 〈u,v〉 = 〈v,u〉 for all u ,v ∈ V ;

(b) linearity: 〈αu + v,w〉 = α〈u,w〉+ 〈v,w〉 for all α ∈ R, and all u ,v ,w ∈ V ;

(c) 〈u,u〉 ≥ 0 for all u ∈ V ; moreover, 〈u,u〉 = 0 implies that u = 0 (where 0 ∈ V is the zero
vector which is the only vector with the property that v + 0 = v for any v ∈ V ).

A vector space endowed with an inner product is called an inner product vector space. In geometry
the inner product is often called dot product and denoted by u · v. Two vectors, u and v, are said
to be orthogonal if 〈u,v〉 = 0.

The standard high-school example of inner product between two vectors from Rn, u = (u1, u2, . . . , un)
and v = (v1, v2, . . . , vn), is defined as

〈u,v〉 :=

n∑
i=1

uivi .

This, however, is not the only possible inner product in Rn: any n× n matrix Q = (qij) with the
property that uTQu > 0 for any u 6= 0 defines an inner product 〈u,v〉Q by

〈u,v〉Q :=

n∑
i=1

n∑
j=1

uiqijvj . (1)

Function spaces (i.e., vector spaces where the elements are functions) can also be endowed with
inner products. Similarly to (1), one can define inner product of two functions f and g, both defined
on the interval [a, b], as

〈f, g〉w :=

∫ b

a
f(x) g(x)w(x) dx , (2)

where w(x) is a function defined on [a, b] such that

∫ b

a
w(x) dx exists, w(x) ≥ 0 for all x ∈ [a, b],

and w(x) is allowed to be zero only at isolated points in [a, b].
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The concept of a basis of a vector space V is the same as in elementary geometry – a basis is a set

of vectors v1,v2, . . . ,vn such that every vector u ∈ V can be written in the form u =
n∑

i=1

uivi in a

unique way; the numbers ui are called the components of the vector u in the basis vi. The number
of vectors in a basis is called the dimension of the vector space V (one can prove that the number
of vectors in every basis is the same, so that the definition of dimension makes sense).

If there is an inner product defined in V , then one can choose the basis v1,v2, . . . ,vn such that
〈vi,vj〉 = 0 if i 6= j – such a basis is called orthogonal. If a basis is orthogonal, then the components
uj of a vector u can be found very easily: take the inner product of

u = u1v1 + u2v2 + · · ·+ unvn

with each of the vectors in the basis to obtain 〈u,v〉 = uj〈vj ,vj〉 (because 〈vi,vj〉 = 0 for any

i 6= j), which implies that uj =
〈u,v〉
〈vj ,vj〉

.

In this problem you will construct an orthogonal basis q0, q1, q2, q3 in the vector space of polynomials
of degree no more than 3, defined on the interval [0, 1] and endowed with the inner product

〈f, g〉 :=

∫ 1

0
f(x) g(x) dx ; (3)

let us denote this vector space by P3,[0,1]. The space of polynomials of degree no higher than n is
(n+ 1)-dimensional because such a polynomial has (n+ 1) coefficients:

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

If one chooses the polynomials 1, x, x2, . . ., xn as the basis of this space, then the components of
p(x) are the numbers a0, a1, . . ., an.

The orthogonal basis of the vector space P3,[0,1] that you will construct below will satisfy two
additional conditions: the degree of the polynomial qi(x) will be i, and each polynomial qi will be
monic, i.e., the the coefficient in front of the highest power of x is equal to 1; these two conditions
combined imply that q0(x) = 1, q1(x) = x+ · · · , q2(x) = x2 + · · · , q3(x) = x3 + · · · .

(a) Construct the monic polynomial q1(x) = x + α such that q1 is orthogonal to q0, i.e., choose
the coefficient α in such a way that 〈q1, q0〉 = 0.

(b) Construct the monic polynomial q2(x) = x2 + βx + γ such that q2 is orthogonal to q0 and
q1. The conditions 〈q2, q0〉 = 0 and 〈q2, q1〉 = 0 give you two equations for the two unknown
coefficients β and γ.

(c) Construct the monic polynomial q3(x) = x3 + µx2 + νx + ρ orthogonal to q0, q1, and q2.
Since the calculations are getting tedious (and any error will give you a completely wrong
final result), here is the answer:

q3(x) = x3 − 3

2
x2 +

3

5
x− 1

20
. (4)

You only need to write down the equations for the unknown coefficients µ, ν, and ρ, and
check that the coefficients in (4) satisfy them.
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(d) Show that the polynomial p(x) = x3 can be written in the basis qi as

p = q3 +
3

2
q2 +

9

10
q1 +

1

4
q0 . (5)

I don’t want you only to check that these coefficients in (5) are indeed the correct ones, but
to approach the problem as if you did not know the coefficients in (5) and wanted to find
them. In other words, show me what you would do – don’t finish the calculations, just write
clearly the expression/procedure that you would use to find the coefficients.

(e) Recall from elementary geometry that a straight line in the direction of the non-zero v ∈ Rn

through the origin of Rn can be written as ` = {tv | t ∈ R} (the condition v 6= 0 is imposed
simply because the zero vector does not have a direction). The orthogonal projection of a
vector u ∈ Rn onto the straight line ` in the direction of v is the vector

projvu =
〈u,v〉
〈v,v〉

v (6)

– see the picture below. You can check (but don’t need to write anything here) that the
expression (6) indeed defines a vector projvu that satisfies the following reasonable properties
justifying the words “orthogonal projection”: (i) proportional to v, (ii) such that if u = αv,
then projvu = u, (iii) equal to 0 if u is orthogonal to v.

projv u

u

v

Similarly, one can define a straight line in the vector space P3,[0,1]. Let

` = {t(q0 + 2q1) | t ∈ R} (7)

be the straight line containing the vector q0 + 2q1 ∈ P3,[0,1]. Find the orthogonal projection,
projq0+2q1p, of the vector p ∈ P3,[0,1] defined by p(x) = x3 onto the straight line ` (7), by
using the coefficients of p in the basis qi given in (5).

Remark: You may need to use some of the following (straightforward, but tedious to obtain
by hand) results:

〈q0, q0〉 = 1 , 〈q1, q1〉 =
1

12
, 〈q2, q2〉 =

1

180
, 〈q3, q3〉 =

1

2800
.
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