
MATH 4193/5103 Homework 1 Due 2/4/20 (Tuesday)

Problem 1. [Semigroup property of the flow of an autonomous ODE]

Consider the following IVP:

dx

dt
= x− x2 , t > 0 ,

x(0) = x0 > 0 .

(1)

(a) Solve the IVP (1); its solution is

φt(x0) =
1

1 +
(
x−10 − 1

)
e−t

,

but I want to see your detailed calculations. You may use the fact that

1

x(1− x)
=

1

x
+

1

1− x

(easily obtained by the method of partial fractions, but you do not need to do this).

(b) Prove that the flow φt from part (a) satisfies the semigroup condition,

φt ◦ φs = φs+t .

Problem 2. [Solution of a constant-coefficient linear system as an exponential]

If M is a square m×m matrix (i.e., a matrix of size m×m with real or complex entries, one
can define the exponential of M as

eM ≡ expM :=
∞∑
j=0

1

j!
Mj , (2)

where M0 is by definition the identity matrix I. It can be shown that this series converges
for any square matrix M.

Exponentials of matrices are useful for representing the solutions of initial-value problems
for systems of linear ordinary differential coefficients with constant coefficients,

dx

dt
= Ax , t > 0 ,

x(0) = x(0) .

(3)

(a) Directly from the definition (2), show that MeM = eMM for any square matrix M.
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(b) Let A be a given m ×m matrix, and t be a real number. Then one can think of eAt

as a function taking an argument from R and having values in the m × m matrices.

Directly from (2), show that
d

dt
eAt = AeAt and eAt|t=0 = I.

(c) Use your result from part (b) to show that the solution of the initial-value problem (3)
can be written as

x(t) = eAt x(0) .

(d) [Only if you are taking the class as 5103; otherwise you get full credit]

For any positive real numbers s and t show that eAseAt = eA(s+t) and use this to show
that x(t+ s) = eAsx(t). How can you interpret this result “physically”?

(e) Directly from the definition (2), show that

eTBT
−1

= TeBT−1 .

This representation is very convenient if eB is easy to compute. In particular, if

B =

(
λ1 0
0 λ2

)
, then eBt =

(
eλ1t 0
0 eλ2t

)
.

(f) Rewrite the linear system

ẋ = 2x

ẏ = 3x− y
(4)

in a matrix form as ẋ = Ax. If T =

(
0 1
1 1

)
with inverse T−1 =

(
−1 1
1 0

)
, find

B = T−1AT.

(g) Use your results from the previous part of this problem to write down eAt (where A is
the matrix from the right-hand side of (4)).

(h) Use your result from part (h) to write down the solution of the initial-value problem

consisting of the system (4) and the initial condition x(0) =

(
x(0)

y(0)

)
. There is a line

in R2 such that if the initial point x(0) belongs to this line, then φt(x
(0)) tends to the

origin as t → ∞, i.e., lim
t→∞

φt(x
(0)) = 0. From the explicit expression for φt(x

(0)) that

you just obtained, find this line.

Problem 3. [Poincaré map]

Consider the system
ṙ = r − r2 , θ̇ = 1 , (5)

where (r, θ) are the polar coordinates in R2.
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(a) Find the solution (r(t), θ(t)) of (5), with initial conditions (r(0), θ(0)) = (r0, θ0).

Hint: You have already obtained the solution of the equation for r(t) in Problem 1;
the solution of the equation for θ(t) is trivial.

(b) Let the Poincaré surface, Σ, be the positive x-axis (i.e., the set of points with θ = 0).
We can use as coordinate on Σ the x-coordinate, i.e., the point (x, y) = (ξ, 0) on
the positive x-axis (where (x, y) are the Cartesian coordinates of a point in R2) is
considered as a point in Σ with coordinate ξ > 0. Compute the Poincaré map from Σ
to itself.

(c) Show that the Poincaré map P : Σ→ Σ obtained in part (b) has a unique fixed point,
i.e., a point ξ∗ > 0 such that P (ξ∗) = ξ∗.

(d) Classify the stability of the fixed point of P found in part (c).

Hint: You may find useful the fact that
d

dξ

1

1 + (ξ−1 − 1)e−2π
=

e−2π

ξ2
[
1 + (ξ−1 − 1)e−2π

]2 .

(e) Interpret your results from parts (c) and (d) in terms of the existence and stability of
a periodic orbit of the system (5).

“Food for Thought” Problem 1.1 [Taylor series, implicit differentiation]

A very important tool that we will be using in this course is the Taylor expansion of a smooth
function,

f(a+ h) = f(a) +
f ′(a)

1!
h+

f ′′(a)

2!
h2 +

f ′′′(a)

3!
h3 +

f (4)(a)

4!
h4 + · · ·

or, equivalently,

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 +

f (4)(a)

4!
(x− a)4 + · · · .

The truncations Pk(x) consisting of the terms of degree k and smaller,

P1(x) = f(a) +
f ′(a)

1!
(x− a) ,

P2(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 , . . .

are the best fitting polynomials to the function f(x) at the point a.

Consider a function y(x) defined implicitly by

x+ y − y3 = 0 . (6)

1“Food for Thought” problems are not to be turned in, but you have to read them and think about them.
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Check that the point (2, 1) belongs to the graph of the function. Use implicit differentiation
to show that the straight line and parabola that fit best to the graph of y(x) at the point (2, 1)
are given by

P1(x) = 1 +
1

2
(x− 2) , P2(x) = 1 +

1

2
(x− 2)− 3

8
(x− 2)2 . (7)

The graphs of y(x) and the truncations P1(x) and P2(x) are plotted in the figure below.

Figure 1: Graphs of the function defined implicitly by (6) and the straight line and parabola
(given by (7)) that fit best to the graph of the function at the point (2, 1).
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