
MATH 3423 Homework 10 Due Thu, 11/21/19

Problem 1. Determine the geometric meaning of the operators A, B, and C acting on R2,
if they are represented by the following matrices:

A =

(
−1 0

0 −1

)
, B =

(
1 0
0 −1

)
, C =

1√
2

(
1 −1

1 1

)
.

Hint: Take an arbitrary vector in R2, say u =
(2

1

)
, draw u and at the products Au, Bu, and

Cu in R2, and the geometric meaning of the corresponding operators will be transparent.

Problem 2.

(a) Directly from the definition of product of matrices, show that (AB)T = BTAT .

(b) Directly from the definition of orthogonality of matrices (for the case of Euclidean
inner product), i.e., ATA = I, prove that the product of two orthogonal matrices is
orthogonal.

(c)

Problem 3. Let the linear operator in the 2-dimensional vector space V with basis f1, f2,
be defined by

Af1 = −f1 + 4f2 ,

Af2 = f1 + 2f2 .

(a) Write down the matrix A of the linear operator A in the basis f1, f2.

(b) Compute the eigenvalues and the eigenvectors of this matrix.

Remark: In class we wrote A and found that λ1 = −2, λ2 = 3, u1 =
( 1
−1

)
. Here you

only have to find an eigenvector u2. As you know, u2 is not uniquely defined; choose
u2 it in such a way that its first component be equal to 1.

(c) Now you know that

u1 = f1 − f2 ,

u2 = f1 + (?) f2 .

Express the original basis vectors f1 =
(1

0

)
and f2 =

(0
1

)
in terms of the eigenvectors

u1 and u2. (Do not use any “canned” formulas, just do the obvious calculations.)
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(d) Use the relations

u1 = f1 − f2 ,

u2 = f1 + (?) f2

obtained in part (b), and the relations

f1 =
4

5
u1 + (?)u2 ,

f2 = (?)u1 +
1

5
u2

obtained in part (c), as well as the definition of the linear operator A in the statement
of the problem (i.e., the action of A on the basis f1, f2), to express Au1 and Au2 in
terms of u1 and u2. At the end the result will be totally obvious, but I want to see
your detailed calculations.

(e) Since the eigenvalues of the matrix A are real and distinct, a theorem guarantees
that the eigenvectors of the linear operator A form a basis of the linear space V . Let

Ã = (ãij) be the matrix of the linear operator A in the basis u1, u2, i.e., Auj =
2∑
i=1

ãij ui.

Find the entries ãij of the matrix Ã.

Remark: The result will be obvious, but I want to see all calculations that I am asking
you to perform.

Problem 4. Consider the linear constant coefficient system

x′1(t) = x1(t) + 2x2(t)

x′2(t) = 2x1(t) + x2(t) .
(1)

(a) Write the system (1) in the form x′(t) = Ax(t). Note that A is a symmetric matrix.

(b) Find the eigenvectors and the normalized eigenvectors of the symmetric matrix A.

(c) The general theory claims that the eigenvalues of a symmetric matrix are real, and the
eigenvectors corresponding to different eigenvalues are orthogonal (with respect to the
Euclidean inner product, 〈u,v〉 = uTv =

∑
i uivi). Check that these properties hold

for the matrix A from parts (a) and (b).

(d) Normalize the eigenvectors of the matrix A, and write the matrix S whose columns
are the normalized eigenvectors of A.

(e) Show by a direct calculation that the matrix S from part (d) is orthogonal (with respect

to the Euclidean inner product), i.e., that STS = I.
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(f) Find S−1. You can answer this question without doing any calculations, but please
explain what properties you are using.

(g) Find D = S−1AS and compute etD.

(h) Use your results from parts (d)–(g) to compute et A.

(i) Use your results to write down the general solution x(t) of the system (1).

(j) Use your result from part (i) to find the particular solution of the system (1) that

satisfies the initial condition x(0) =

(
5
1

)
.

Problem 5. Solve the linear constant coefficient system (1) from the previous problem

with initial condition x(0) =

(
5
1

)
by using that, if all eigenvalues λj of the matrix A are

distinct, then the general solution of the system x′(t) = Ax(t) is given by

x(t) =
n∑
j=1

Cje
λjtuj ,

where uj are the corresponding eigenvectors (not necessarily normalized).

Problem 6. Determine the eigenvalues and eigenvectors of the matrix A =

(
1 −1
1 3

)
.

How many linearly independent eigenvectors does it have?

Remark: This problem shows the trouble one may encounter in the case of repeated eigen-
values.

Food for Thought Problem 1. (This problem does not need to be turned in.)

Express the coefficients of the characteristic polynomial, det(A − λI), of the matrix A =(
a b
c d

)
in terms of detA and trA.

Food for thought: The eigenvalues of an operator A should not depend on the choice of basis
(because their definition did not require a choice of basis). On the other hand, the eigenvalues
are roots of the characteristic equation det(A−λI) = 0, which depends on the choice of basis
in V (because in different bases the matrix A of the linear operator A looks different). We
know from the handout Change of basis in a linear space (linked at Lecture 23) that, if the

change of basis is defined by the (invertible) matrix A, then the matrix Ã of the operator A

in the new basis is related to the matrix A of the operator in the old basis by Ã = C AC−1.

This poses the question whether the characteristic polynomials det(A−λI) and det(Ã−λI)
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are the same (as functions of λ). Recalling the property det(AB) = det(A) det(B) (which

also implies that det(A−1) = (detA)−1), we obtain

det(Ã− λI) = det(C AC−1 − λI) = det(C AC−1 − λC I C−1)

= det
(
C(A− λI)C−1

)
= det(C) det(A− λI) det(C−1) = det(A− λI) ,

therefore the characteristic equations for the matrix of the operator A does not depend on
the basis.

One can also check that the determinant and the trace of the matrix of a linear operator A
do not depend on the choice of basis. As you had to show in this problem, the characteristic
equation has detA and trA as coefficients. One can use the property of determinants to
show that the determinant does not depend on the choice of basis:

det(Ã) = det(C AC−1) = detC detA det(C−1) = detC detA (detC)−1 = detA .

As for the trace, one can easily prove that

tr
(
AB C D

)
= tr

(
B C DA

)
= tr

(
C DAB

)
= tr

(
DABC

)
(cyclic permutation of the product the matrices in the trace; analogous formula holds for the
trace of the product of any number of matrices, not only four matrices as in this equality).
Therefore

tr
(
C AC−1) = tr

(
AC−1C) = tr

(
AI
)
= tr

(
A
)
.

All this provides another proof that the eigenvalues of a 2 × 2 matrix does not depend on
the choice of a basis.
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