
MATH 4433 Homework 10 Due 11/13/2014

Section 5.2: Exercises 4, 8. Hints and remarks:

• in Exercise 4, use directly the definition of continuity, and notice that f(x) − f(3) =
(x− 3)(x+ 6);

• in Exercise 8, you are allowed to use all theorems you know about limits (i.e., work as
if this were a problem in Calculus), in particular, that limn→∞ x

n = 0 if |x| < 1; you
have to study separately the cases |x| > 1, |x| < 1, x = −1, and x = 1; after you found
f , plot a graph of it.

Section 5.3: Exercises 3(a,b,c,d,e,f,h), 4, 7, 9. Hints and remarks:

• the answers for Exercise 3 are given in the back of the book; do not confuse “finite”
with “bounded”, and “infinite” with “unbounded”; in part (b) the set D cannot be
bounded (because of Theorem 5.3.2 and Heine-Borel Theorem), so take D = [0,∞)
and f : D → R defined by f(x) = 1 − e−x; in part (c) consider, say, f(x) = x2 and
take D to be the union of an open interval and a one-point set; one possible function
in part (d) is the inverse of the function from part (b) (with appropriately defined
domain), or take the function f(x) = x2 with D = (−1, 2];

• there is a hint in the book for Exercise 7.

Section 6.1: Exercises 3(a,b), 4(c,d), 5, 9, 11, 18. Hints and remarks:

• in Exercise 3(a), you have to find separately the left-handed and the right-handed

limits of
f(x)− f(1)

x− 1
; recall the identity a3 − b3 = (a− b)(a2 + ab+ b2);

• you have to solve Exercises 4(c,d) directly from the definition of derivative; in Exercise

4(d), a useful identity is a− b = (
√
a−
√
b)(
√
a+
√
b);

• in Exercise 5(a), use the identity a3 − b3 = ( 3
√
a− 3
√
b)(a2/3 + 3

√
ab+ b2/3);

• in Exercise 11(b), you have to prove only that f is differentiable at x = 0 (why?),
which can be done very easily by using directly the definition of derivative;
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Food for Thought:

• Sec. 5.3, exercises 1, 2, 12 (Exercise 12 is more difficult, but it would be a great exercise
for you; relevant theorems that you will need in the proof are Heine-Borel Theorem,
Bolzano-Weierstrass Theorem for sequences, and the result of Exercise 4.1.15; the
easiest way to prove the boundedness of f(D) is by contradiction).

• Sec. 6.1, exercises 1, 2, 7.

Solution of Exercise 5.1.12.

Method 1. The easiest way to show the continuity of
√
f on D is to use the fact that

√
f

can be written as a composition of two functions:
√
f = g ◦ f , where g : [0,∞) → R is

defined as g(x) =
√
x. The continuity of

√
f follows directly from Theorem 5.2.12.

Method 2. One can use directly the definition of continuity. We will consider the cases
f(c) = 0 and f(c) > 0 separately.

Case 1: f(c) = 0. Let ε > 0 be an arbitrary positive number. We have to find δ > 0 such

that if x ∈ D satisfies |x − c| < δ, then
∣∣∣√f(x)−

√
f(c)

∣∣∣ < ε. Since f is continuous

at c = 0 and ε2 > 0, we can find δ > 0 such that

|f(x)− f(c)| < ε2 ∀x ∈ N(c, δ) ∩D .

Since we assumed that f(c) = 0 and we know that f(x) ≥ 0 ∀x ∈ D, we have
|f(x)− f(c)| = |f(x)| = f(x). Using this, for the δ chosen above, we have∣∣∣√f(x)−

√
f(c)

∣∣∣ =
∣∣∣√f(x)−

√
0
∣∣∣ =

√
f(x) <

√
ε2 < ε ∀x ∈ N(c, δ) ∩D .

Case : f(c) > 0. First note that the continuity of f at c guarantees that, for every α > 0,
there exists δ > 0 such that

|f(x)− f(c)| < α ∀x ∈ N(c, δ) ∩D ; (1)

we will chose the value of α below. This, in particular, allows us to take δ small
enough so that f(x) is strictly positive ∀x ∈ N(c, δ) ∩ D – to achieve this, simply
take, say, α = 1

5
f(c) > 0 in (1), and let δ1 > 0 be the corresponding value of δ, then

f(x) > 4
5
f(c) > 0 ∀x ∈ N(c, δ1) ∩D (why)?

Let ε > 0 be an arbitrary positive number. For any 0 < δ ≤ δ1, we have∣∣∣√f(x)−
√
f(c)

∣∣∣ =
|f(x)− f(c)|√
f(x) +

√
f(c)

<
|f(x)− f(c)|√

f(c)
<

α√
f(c)

(?)
< ε .

To satisfy the inequality
(?)
<, we choose α = 1

2
ε
√
f(c) > 0 in (1); let δ2 > 0 be the

value of δ that makes this happen. Choosing δ := min{δ1, δ2}, we have achieved that∣∣∣√f(x)−
√
f(c)

∣∣∣ < ε for every x ∈ N(c, δ) ∩D.
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