
MATH 3413 Homework 11 Due Fri, Dec 10, 2010

Problem 1. Consider the following problem for the wave equation with air resistance term,
with homogeneous Dirichlet BCs on the spatial interval x ∈ [0, π]:

uxx − 10ut − utt = 0 , x ∈ [0, π] , t ≥ 0 ,

u(0, t) = 0 , u(π, t) = 0 , t ≥ 0 ,

u(x, 0) = −8 sin 3x + 12 sin 13x , ut(x, 0) = 0 , x ∈ [0, π] .

Physically, this problem corresponds to a spring vibrating in air with resistance proportional
to the velocity (i.e., to the time derivative ut(x, t)). The coefficient multiplying ut(x, t) is
proportional to the air resistance coefficient.

Because of the homogeneous Dirichlet BCs, it is clear that we should look for an expansion
of the unknown function u(x, t) of the form

u(x, t) =
∞∑

n=1

Tn(t) sin
nπx

L
=

∞∑
n=1

Tn(t) sin nx (1)

(here L = π is the length of the string).

(a) Plug the expansion (1) in the PDE to show that the unknown functions Tn(t) must
satisfy the ODEs

T ′′n (t) + 10 T ′n(t) + n2Tn(t) = 0 . (2)

(b) The initial conditions for the functions Tn(t) come from the initial conditions for u(x, t).
Plug the expansion (1) into the initial conditions for u(x, t) to show that Tn(0) and
T ′n(0) are zero for all n except for n = 3 and n = 13. What are the initial conditions
T3(0) and T ′3(0) for T3(t), and the initial conditions T13(0) and T ′13(0) for T13(t)?

(c) Since the ODEs (2) are homogeneous (i.e., have zero right-hand sides), the solutions
for all functions Tn(t) with n not equal to 3 or 13 will be identically equal to zero.

Solve the IVP for the function T3(t).

(d) Solve the IVP for the function T13(t).

(e) Write down the solution,

u(x, t) = T3(t) sin 3x + T13(t) sin 13x ,

with the functions T3(t) and T13(t) found in parts (c) and (d).

(f) From the physical interpretation of the problem, what would you expect the asymptotic
position of the string to be. No calculation is needed here, only a couple of sentences
of explanation.
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(g) Does the solution found in part (e) behave as you predicted on physical grounds in
part (f)?

Problem 2. In this problem you will make some predictions about the asymptotic behavior
(i.e., when t→∞) of the solution u(x, t) of the boundary value problem

ut = α2 uxx + φ(x) , x ∈ [0, L] , t ∈ [0,∞)

u(0, t) = 0 , u(L, t) = 0 for t ∈ [0,∞)

u(x, 0) = f(x) for x ∈ [0, L] .

Physically, this problem describes the temperature distribution in a rod of length L with
insulated side walls and ends at x = 0 and x = L kept at zero temperature. The initial
temperature in the rod is given by the function f(x) and, more interestingly, there are sources
of heat in the rod whose power is given by the function φ(x) in the PDE.

One can solve this problem completely (which you will do in Problem 3 below), but before
doing this, try to obtain some information about the behavior of the solution u(x, t) at large
times. Since the temperatures at the ends of the rod do not depend on time, and the intensity
of the sources of heat is time-independent as well, it is clear that after some initial period of
more or less rapid changes, the solution u(x, t) will tend to some time-independent function.
Let us call this function u∞(x):

u∞(x) := lim
t→∞

u(x, t) .

Since this function does not depend on t, it will be a solution of some ordinary differential
equation!

(a) From the PDE given in this problem, obtain an ODE for the function u∞(x).

(b) From the BCs for u(x, t), obtain BCs for u∞(x). Note that the initial condition for
u(x, t) will not matter in the limit t→∞.

(c) Solve the boundary value problem for the asymptotic temperature distribution u∞(t)
in the case α = 1, L = π, φ(x) = 2 sin 5x, f(x) = sin 3x.

(d) Sketch the function u∞(x). Find the highest and the lowest temperatures in the rod
after very long time.

Problem 3. Now you will find the exact solution of the boundary value problem

ut = α2 uxx + φ(x) , x ∈ [0, L] , t ∈ [0,∞)

u(0, t) = 0 , u(L, t) = 0 for t ∈ [0,∞)

u(x, 0) = f(x) for x ∈ [0, L] .

This is the same as in Problem 2, but there you only found the asymptotic behavior of u(x, t)
as t→∞, while here you will solve the problem completely.
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(a) Because of the boundary conditions, look for a solution of the problem of the form

u(x, t) =
∞∑

n=1

Tn(t) sin
nπx

L
.

Assume that the function φ(x) in the right-hand side of the PDE can be expanded in
a sine Fourier series as

φ(x) =
∞∑

n=1

φn sin
nπx

L
,

where the coefficients φn are given by the standard formula, φn =
2

L

∫ L

0

φ(x) sin
nπx

L
dx.

Plug these expansions in the partial differential equation to show that the functions
Tn(t) satisfy the non-homogeneous ODEs

T ′n(t) +
(αnπx

L

)2

Tn(t) = φn .

(b) Assume that the sine Fourier series of the he initial condition f(x) is

f(x) =
∞∑

n=1

fn sin
nπx

L
.

Plug the expansion of u(x, t) into the initial condition to show that the initial conditions
for the functions Tn(t) are Tn(0) = fn.

(c) Solve the initial value problems for the functions Tn(t) derived in parts (a) and (b).

(d) Using your results from parts (a) and (c), write down the solution u(x, t) of the original
boundary value problem.

(e) Write down the solution u(x, t) of the original boundary value problem in the case
α = 1, L = π, φ(x) = 2 sin 5x, f(x) = sin 3x (the same as in Problem 2c above).

(f) Check if the asymptotic (i.e., as t → ∞) behavior of the solution u(x, t) obtained in
part (e) behaves as the function u∞(x) obtained in Problem 2d.

Additional problem 1. (Not to be turned in; the solution is on the web-site!)
Consider the problem about the stationary temperature distribution in the rectangle (x, y) ∈
[0, a] × [0, b] if there are no sources of heat in the rectangle (hence the temperature u(x, y)
satisfies Laplace’s equation ∆u = 0), and the temperature at the sides of the rectangle is
maintained as follows:

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0, b]

u(x, 0) = sin
3πx

a
, u(x, b) = 5 sin

7πx

a
for x ∈ [0, a] .
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(a) Solve the boundary value problem

∆u = 0 , (x, y) ∈ [0, a]× [0, b]

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0, b]

u(x, 0) = 0 , u(x, b) = 5 sin
7πx

a
for x ∈ [0, a] .

(b) Solve the boundary value problem

∆u = 0 , (x, y) ∈ [0, a]× [0, b]

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0, b]

u(x, 0) = sin
3πx

a
, u(x, b) = 0 for x ∈ [0, a] .

Hint: Let Yn(y) stands for the functions in the expansion

u(x, y) =
∞∑

n=1

Yn(y) Xn(x) ,

where because of the homogeneous boundary conditions at x = 0 and x = a the
functions Xn(x) are given by Xn(x) = sin nπx

a
. Then the general solution of the ODE

for Yn(y) is

Yn(y) = Cn cosh
nπy

a
+ Dn sinh

nπy

a
.

Show that the homogeneous boundary condition at y = b implies that

Yn(y) = En

(
sinh

nπb

a
cosh

nπy

a
− cosh

nπb

a
sinh

nπy

a

)
= En sinh

nπ(b− y)

a

(where En are constants arbitrary at the moment); here we have used the fact that
hyperbolic sine satisfies

sinh(α± β) = sinh α cosh β ± cosh α sinh β .

Now impose the remaining boundary condition to find the constants En (of which only
one will be non-zero).

(c) Since the equation is linear and homogeneous (i.e., with a zero right-hand side), the
principle of superposition holds similarly to the case of ordinary differential equations.
Using this fact, write down the solution of the boundary value problem

∆u = 0 , (x, y) ∈ [0, a]× [0, b]

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0, b]

u(x, 0) = sin
3πx

a
, u(x, b) = 5 sin

7πx

a
for x ∈ [0, a] .
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