
MATH 3413 Homework 11 Due Thu, May 3, 2012

Problem 1.

(a) Find the general solution of the partial differential equation

uxyy(x, y) = 2x sin y

in three different ways as follows:

– first integrate with respect to x and then integrate twice with respect to y;

– first integrate with respect to y, then with respect to x, and then again with
respect to y;

– first integrate twice with respect to y and then integrate with respect to x.

(b) Discuss your results from part (a): Did you get the same result by integrating the
equation in different order? How many arbitrary functions are in the general solution,
and on how many variables does each of these arbitrary functions depend? Is this what
you expected?

Problem 2. Consider the wave equation for the function u(x, t) of one spatial (x) and one
temporal (t) variables:

utt(x, t) = c2 uxx(x, t) , x ∈ R , t ∈ [0,∞) ,

where c is the speed of the wave (measured in meters per second).

(a) Let σ = Σ(x, t) and γ = Γ(x, t) be new variables defined as

σ = Σ(x, t) := x− ct , γ = Γ(x, t) := x+ ct .

Let ũ(σ, γ) be a function of two variables defined as

u(x, t) := ũ
(
Σ(x, t),Γ(x, t)

)
= ũ(σ, γ)|σ=Σ(x,t), γ=Γ(x,t)

Using the standard jargon, ũ(σ, γ) is the function u(x, t) expressed in the new variables
σ and γ. Using the chain rule, we can express the partial derivatives of u(x, y) through
the partial derivatives of ũ(σ, γ) as follows (subscripts stand for partial derivatives):

ut = ũσΣt + ũγΓt = −cũσ + cũγ

utt = (−cũσ + cũγ)t = −c (ũσσΣt + ũσγΓt) + c (ũγσΣt + ũγγΓt) = c2 (ũσσ − 2ũσγ + ũγγ)

ux = ũσΣx + ũγΓx = ũσ + ũγ

uxx = (ũσ + ũγ)x = ũσσΣx + ũσγΓx + ũγσΣx + ũγγΓx = ũσσ + 2ũσγ + ũγγ .
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Plugging all these derivatives in the wave equation, we obtain

c2 (ũσσ − 2ũσγ + ũγγ) = c2 (ũσσ + 2ũσγ + ũγγ) ,

or, after elementary cancellations,

ũσγ(σ, γ) = 0 .

The only thing that you have to do in this part of the problem is to show that the
general solution of this PDE is

ũ(σ, γ) = f(σ) + g(γ) ,

where f and g are arbitrary functions of one variable.

(b) Go to the original variables to show that the general solution of the wave equation
utt = c2 uxx is

u(x, t) = f(x− ct) + g(x+ ct) .

(c) Now consider the initial value problem consisting of the wave equation in part (a) and
the initial conditions

u(x, 0) = φ(x) , ut(x, 0) = ψ(x)

(where the subscript t stands for differentiation with the respect to t). In physical
terms, u(x, 0) is the “initial position”, and ut(x, 0) is the “initial speed”. Show that
the functions f and g are related to φ and ψ as follows:

f(x) + g(x) = φ(x)

−f ′(x) + g′(x) =
1

c
ψ(x) .

(d) One can integrate the second equation from the system in (c) and solve it for the
functions f and g, obtaining

f(x) + g(x) = φ(x)

−f(x) + g(x) =
1

c

∫ x

0

ψ(s) ds+ A ,

where A is an arbitrary constant. Solve this system to show that

f(x) =
1

2
φ(x)− 1

2c

∫ x

0

ψ(s) ds− A

2

g(x) =
1

2
φ(x)− 1

2c

∫ x

0

ψ(s) ds+
A

2
.
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(e) Use your result in (d) to show that the solution of the initial value problem

utt(x, t) = c2 uxx(x, t) , x ∈ R , t ∈ [0,∞)

u(x, 0) = φ(x) , ut(x, 0) = ψ(x) , for x ∈ R

is

u(x, t) =
1

2
[φ(x− ct) + φ(x+ ct)] +

1

2c

∫ x+ct

x−ct
ψ(s) ds .

Congratulations! You have derived the so-called D’Alembert formula for the solution
of the wave equation in one spatial dimension on the whole real line!

(f) Use D’Alembert formula to solve the initial-value problem

utt(x, t) = c2 uxx(x, t) , x ∈ R , t ∈ [0,∞)

u(x, 0) = 0 , ut(x, 0) = x e−x
2

, for x ∈ R .

Problem 3. Solve the boundary value problem

∆u(x, y) = 0

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0,∞)

u(x, 0) = sin
3πx

a
for x ∈ [0, a] .

in the semi-infinite strip x ∈ [0, a], y ∈ [0,∞). From physical point of view it is quite clear
that we have to also impose the condition limy→∞ u(x, y) = 0.

Hint: When you are trying to find the functions Yn(y), it will be more convenient to write
them as superposition of exponents rather than as superposition of hyperbolic functions
(because e−(positive constant) y tends to 0 while e(positive constant) y tends to infinity as y → ∞).
Reading Example 2 from Section 9.7 of the book (on pages 648, 649) will be VERY useful!

Problem 4. Consider the following problem for the wave equation with air resistance term,
with homogeneous Dirichlet BCs on the spatial interval x ∈ [0, π]:

uxx − 10ut − utt = 0 , x ∈ [0, π] , t ≥ 0 ,

u(0, t) = 0 , u(π, t) = 0 , t ≥ 0 ,

u(x, 0) = −8 sin 3x+ 12 sin 13x , ut(x, 0) = 0 , x ∈ [0, π] .

Physically, this problem corresponds to a spring vibrating in air with resistance proportional
to the velocity (i.e., to the time derivative ut(x, t)). The coefficient multiplying ut(x, t) is
proportional to the air resistance coefficient.
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Because of the homogeneous Dirichlet BCs, it is clear that we should look for an expansion
of the unknown function u(x, t) of the form

u(x, t) =
∞∑
n=1

Tn(t) sin
nπx

L
=
∞∑
n=1

Tn(t) sinnx (1)

(here L = π is the length of the string).

(a) Plug the expansion (1) in the PDE to show that the unknown functions Tn(t) must
satisfy the ODEs

T ′′n (t) + 10T ′n(t) + n2Tn(t) = 0 . (2)

(b) The initial conditions for the functions Tn(t) come from the initial conditions for u(x, t).
Plug the expansion (1) into the initial conditions for u(x, t) to show that Tn(0) and
T ′n(0) are zero for all n except for n = 3 and n = 13. What are the initial conditions
T3(0) and T ′3(0) for T3(t), and the initial conditions T13(0) and T ′13(0) for T13(t)?

(c) Since the ODEs (2) are homogeneous (i.e., have zero right-hand sides), the solutions
for all functions Tn(t) with n not equal to 3 or 13 will be identically equal to zero.

Solve the initial-value problem for the function T3(t).

(d) Solve the initial-value problem for the function T13(t).

(e) Write down the solution,

u(x, t) = T3(t) sin 3x+ T13(t) sin 13x ,

with the functions T3(t) and T13(t) found in parts (c) and (d).

(f) From the physical interpretation of the problem, what would you expect the asymptotic
position of the string to be. No calculation is needed here, only a couple of sentences
of explanation.

(g) Does the solution found in part (e) behave as you predicted on physical grounds in
part (f)?

Additional problem 1. (Not to be turned in; the solution is on the web-site!)

Consider the problem about the stationary temperature distribution in the rectangle x ∈
[0, a], y ∈ [0, b] (which can be symbolically written as (x, y) ∈ [0, a] × [0, b]) if there are no
sources of heat in the rectangle (hence the temperature u(x, y) satisfies Laplace’s equation
∆u = 0), and the temperature at the sides of the rectangle is maintained as follows:

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0, b]

u(x, 0) = sin
3πx

a
, u(x, b) = 5 sin

7πx

a
for x ∈ [0, a] .
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(a) Solve the boundary value problem

∆u = 0 , (x, y) ∈ [0, a]× [0, b]

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0, b]

u(x, 0) = 0 , u(x, b) = 5 sin
7πx

a
for x ∈ [0, a] .

(b) Solve the boundary value problem

∆u = 0 , (x, y) ∈ [0, a]× [0, b]

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0, b]

u(x, 0) = sin
3πx

a
, u(x, b) = 0 for x ∈ [0, a] .

Hint: Let Yn(y) stands for the functions in the expansion

u(x, y) =
∞∑
n=1

Yn(y)Xn(x) ,

where because of the homogeneous boundary conditions at x = 0 and x = a the
functions Xn(x) are given by Xn(x) = sin nπx

a
. Then the general solution of the ODE

for Yn(y) is

Yn(y) = Cn cosh
nπy

a
+Dn sinh

nπy

a
.

Show that the homogeneous boundary condition at y = b implies that

Yn(y) = En

(
sinh

nπb

a
cosh

nπy

a
− cosh

nπb

a
sinh

nπy

a

)
= En sinh

nπ(b− y)

a

(where En are constants arbitrary at the moment); here we have used the fact that
hyperbolic sine satisfies

sinh(α± β) = sinhα cosh β ± coshα sinh β .

Now impose the remaining boundary condition to find the constants En (of which only
one will be non-zero).

(c) Since the equation is linear and homogeneous (i.e., with a zero right-hand side), the
principle of superposition holds similarly to the case of ordinary differential equations.
Using this fact, write down the solution of the boundary value problem

∆u = 0 , (x, y) ∈ [0, a]× [0, b]

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0, b]

u(x, 0) = sin
3πx

a
, u(x, b) = 5 sin

7πx

a
for x ∈ [0, a] .
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