
MATH 4073 Homework 2 Due Wed, 9/4/13

Problem 1. Even simple tasks like solving a quadratic equation numerically should be approached
with care. One can just use the formula for the roots of a quadratic equation

x1,2 =
−b±

√
b2 − 4ac

2a
.

– the MATLAB function nikola_petrov_quadr_eqn1.m (available at the class web-site) does ex-
actly this. MATLAB works with complex numbers – to see this, solve the quadratic equation
x2 − 6x+ 25 = 0 by typing nikola_petrov_quadr_eqn1(1,-6,25).

(a) Use nikola_petrov_quadr_eqn1.m to solve the quadratic equation

10−5 x2 − 500000x+ 1 = 0 . (1)

Compute the absolute and the relative error of the values this function gives for the roots of
the equations. The exact roots of this equation (with 20 digits of accuracy) are

x1 = 2.0000000000000000800 . . .× 10−6 ,

x2 = 5.0000000000000002000 . . .× 1010 .

Remark: To get 10−5 in MATLAB, type 1e-5 (not 10e-5 , as sometimes people do).

(b) The loss of accuracy in the computations in part (a) was due to the fact that in computing

500000−
√

5000002 − 4× 10−5 × 1

we subtract two nearly equal numbers, which leads to a loss of accurate digits. On the other
hand, computing

500000 +
√

5000002 − 4× 10−5 × 1

is perfectly safe numerically. To avoid the numerical problems caused by subtracting nearly
equal numbers, one can use the “standard” formula when there is no danger, while in the
case when the sign of the b is such that a dangerous cancellation may occur, the expression
for the root can be rewritten as

−b−
√
b2 − 4ac

2a
· −b+

√
b2 − 4ac

−b+
√
b2 − 4ac

=
4ac

2a(−b+
√
b2 − 4ac)

=
2c

−b+
√
b2 − 4ac

. (2)

If the computation of −b −
√
b2 − 4ac is dangerous numerically, then the computation of

−b+
√
b2 − 4ac will be perfectly safe.

Write a MATLAB function called yourfirstname_yourfamilyname_quadr_eqn2.m that
uses the “standard” formula for one of the roots and (2) for the other root (you have
to use the MATLAB command if in order to check the sign of b). Use your function
yourfirstname_yourfamilyname_quadr_eqn2.m to solve the quadratic equation (1). Attach
a printout of your program and the result of running it to solve the quadratic equation (1).
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Problem 2. A solid ball of radius r is floating in water, as shown in Figure 1.

ξ

water level

z = r

The density of the ball is equal to ρball, and the density of water is ρwater. The ball is lighter than
water, so it is floating in it; let z be the vertical distance from the lowest point of the ball to the
surface of the water, as shown in the figure.

Using elementary integration, one can show that the part of the sphere submerged in the water has
volume

Vsubmerged =
π

3
z2 (3r − z) (3)

(you do not need to prove this formula, I am sure you can to it).

According to law of Archimedes, the buoyant force pushing the ball upwards is equal to the weight of
the water displaced by the body, i.e., the weight of the water which would have filled the submerged
part of the body. If g = 9.8 m

s2
stands for the free-fall acceleration, then the buoyant force is equal

to
Fbuoyant = g ρwater Vsubmerged .

The ball will be in equilibrium if the weight of the ball,

Fweight of ball = g ρball Vball ,

(pulling the ball downwards) is equal to the buoyant force Fbuoyant (which pushes the ball upwards):

g ρwater Vsubmerged = g ρball Vball .

Canceling out g and using the formula for the volume of a ball, we obtain the following condition
for equilibrium:

ρwater
π

3
z3 (3r − z) = ρball

4π

3
r3 .

Let s be a (positive) dimensionless quantity defined as

s =
ρball
ρwater

> 0 .

Using this definition, after some elementary algebra one can rewrite the equilibrium condition in
the form

z3 − 3rz2 + 4sr3 = 0 . (4)
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Finally, let us introduce the non-dimensional quantity

ξ =
z

r
,

whose physically meaningful range is, obviously, ξ ∈ [0, 2]. In terms of ξ, the equilibrium condition
(4) takes the simple form

ξ3 − 3ξ2 + 4s = 0 . (5)

(a) Check that the expression (3) for the volume of the submerged part is plausible. In other
words, do not prove it, but think of several – I want you to think of three – different cases
in which this formula should give obvious results (for example, it is obvious what Vsubmerged

should be if z = 0 – check that (3) indeed gives you this value for Vsubmerged; then think of
two more obvious cases).

(b) It is clear from the physics of the problem that for s in the physically meaningful range, the
equation (5) must have a unique solution ξ∗ in the physically meaningful range of values of ξ.
You have to show mathematically that this is indeed the case.

To do this, I suggest that you do the following. Let f(ξ) = ξ3 − 3ξ2 + 4s stand for the
left-hand side of the equilibrium condition (5). The function f is a cubic polynomial, hence
it cannot have more than three real zeros, and can have no more than two extrema. Show
that the function f always has a local maximum at the point ξ1 = 0. What is the value ξ2 of
ξ for which f has a local minimum? What are the values of f(ξ1) and f(ξ2) if s is such that
the ball floats (i.e., does not sink)? Is the function f continuous? Use all these facts to show
mathematically (by using some of the theorems we have discusses in class) that if s in the
“floating” range, the equation f(ξ) = 0 has a unique physically meaningful solution. Which
theorem have you used to draw this conclusion?

(c) Use the MATLAB program newton.m (which you can find at the class web-site) to apply
Newton’s method for computing the numerical value of ξ∗ for s = 0.2, 0.4, 0.5 (this is
obvious!), 0.6, and 0.8, with tolerance 10−8; start from some reasonable initial value. Write
your results in a table containing the value of x, the corresponding values of ξ∗, and the number
of steps that Newton’s method needed to provide the necessary precision. If the value of ξ∗

you obtain is not physically reasonable, change the initial point (remember, Newton’s method
gets lost very easily). Please attach the printout from running the program.

(d) Continue your reasoning in part (b) to show that if s > 1, there is only one real solution of
the equilibrium condition (5), and this solution is not physically reasonable.

Problem 3. Suppose that (pn)∞n=0 is a sequence that converges to p, with pn 6= p for all n. If
positive constants λ and α exist such that

lim
n→∞

|pn+1 − p|
|pn − p|α

= λ , (6)

then we say that the sequence (pn)∞n=0 converges to p of order α, with asymptotic error constant λ.

The concepts of asymptotic error constant λ and especially order of convergence α are very impor-
tant when one is using an iterative method, i.e., a method in which the exact solution of the problem
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is found as a limit of a sequence of approximate values. If the exact value p is a limit of a sequence
{pn}∞n=0 of approximate values, then the error at the nth step of the iteration is En := |pn − p|.
The rate of decreasing of En is one of the most important characteristics of an iterative method.

Assume that the sequence (pn)∞n=0 is generated by some iterative method for finding a root of an
equation. Also assume that we know that the sequence (pn)∞n=0 converges to some number p of
some order α with some asymptotic error constant λ, but we don’t know the values of α and λ.
The goal of this problem is to develop a method for determining the numerical value of α from the
numerical values of the members of the sequence (pn)∞n=0. Let `n := log10En.

(a) Show that for large n, the following approximate identity holds:

`n − α`n−1 ≈ log10 λ .

Hint: Just look at the definition (6) of order of convergence.

(b) Using the approximate identity derived in (a) show that

α ≈ `n − `n+1

`n−1 − `n
.

Note that this approximate formula for α does not depend on the base of the logarithms; if
`n is defined as the log base 10 of En, the formula will remain the same.

(c) The data in Table 1 come from applying the Newton method and the secant method to find
the root of the equation

x+ sinx = 1 ,

whose exact value is p = 0.51097342938856910952001397114508063204535889262 . . .. Use

Table 1: Log10 of the errors of the Newton and the secant methods.

n `n, Newton `n, secant

0 −0.31067 −0.31067
1 −2.85988 −1.49389
2 −7.84087 −2.54052
3 −17.7179 −4.90935
4 −37.4715 −8.33484
5 −76.9787 −14.1282
6 −155.993 −23.3471
7 −314.022 −38.3595
8 −630.079 −62.5907
9 −1262.19 −101.834
10 −2526.42 −165.309
11 −5054.88 −268.027
12 −10111.8 −434.220

the formula derived in part (b) to find empirically the order of convergence α for these two
methods.
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Problem 4. On August 2, 2010, Shigeru Kondo used Alexander Yee announced that they have
calculated 5,000,000,000,000 digits of π (on October 17, 2011 they improved their own record by
computing 10 trillion digits of π). They used the a program called y-cruncher, developed by Yee,
and performed their computations on a single desktop computer built by Kondo; the computation
took 90 days (between 6:19 p.m. on May 4 and 1:21 p.m. on August 3, 2010). You can see their
announcement and details on their work at

http://www.numberworld.org/misc_runs/pi-5t/announce_en.html

http://www.numberworld.org/misc_runs/pi-5t/details.html

In their computations Kondo and Yee used the following formula derived by the brothers David
and Gregory Chudnovsky, who relied on some ideas of the famous Inidian mathematician Srinivasa
Ramanujan (1887–1920):

1

π
=

√
10005

4270934400

∞∑
k=0

(−1)k(6k)!

(k!)3 (3k)!

13591409 + 545140134k

6403203k
.

In this problem you will use Mathematica to find the rate of convergence of the right-hand side of
this formula to the exact value of 1

π . You can define the function chud[n] which computes the sum
of the first n terms of Chudnovsky’s formula:

termPi[k_]=(-1)^k*(6*k)!/(k!)^3/(3*k)!*(13591409+545140134*k)/640320^(3*k)

chud[n_]=Sqrt[10005]/4270934400*Sum[termPi[k], {k, 0, n}]

After you type each line in Mathematica, press shift, hold it down, and press return. The
underscores after k and n in termPi[k_] and chud[n_] tell Mathematica that we are defining new
functions, and k and n the variables of these functions.

To find the numerical value with accuracy of 1000 digits of the difference between the exact value

of
1

π
and the partial sum of the sum containing, say, 8 terms – which in our notations will be equal

to chud[7] – you can type the following:

N[chud[7] - 1/Pi, 1000]

There will a problem, however, and Mathematica will complain that its internal precision limit is
not enough for the computation (try it!). That is why you have to type

Block[{$MaxExtraPrecision = 1000}, N[chud[7] - 1/Pi, 1000]]

(a) Compute the numerical values of the absolute error En =
∣∣ 1
π − chud[n]

∣∣ for n = 0, 1, 2, 3, 4, 5, 6, 7,
and write your results in a table (there is no need to write more than 3–4 digits of accuracy
of En in the table).

(b) For the values of n used in part (a), show that your numerical results give En+1

En
≈ 10−14. Can

you express En approximately in terms of E0? I do not want anything sophisticated, just a
VERY ROUGH approximate formula.
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