
MATH 4193/5103 Homework 2 Due 2/18/20 (Tuesday)

Problem 1. [Fixed points and their stability without calculations]

Consider the ODE
dx

dt
= f(x) := x(x− 2)2(x− 4)5 . (1)

(a) Without doing any calculations, sketch the right-hand side of the ODE (1) in the phase
plane (i.e., plot the graph of the function f from (1) in the (x, x′) plane). Find all the
fixed points of the ODE (1). Indicate with arrows on the x-axis to the left or to the
right in which direction will the function x(t) evolve for different initial conditions. No
explanation is needed.

(b) Based on your observations in part (a), classify the fixed points as stable (attracting),
unstable (repelling) or semi-stable, and put them on the x-axis (full circle, empty circle,
or half-full circle, respectively).

(c) Without taking any derivatives I was able to figure out that:

• the Taylor series expansion of the function f(x) from (1) about the point 0 has
the form

f(x) = −4096x+ [higher order terms in x] ;

• the Taylor series expansion of the function f(x) from (1) about the point 2 has
the form

f(x) = −64 (x− 2)2 + [higher order terms in (x− 2)] .

Without doing any calculations, write down the first term in the Taylor expansion of
the function f(x) from (1) about the point 4. Explain clearly how you computed the
coefficient.

(d) Sketch in the (t, x)-plane the solutions starting at the following initial conditions:
x(0) = −1, 0, 1, 2, 3, 4, 5 (sketch all solutions on the same graph). In each of these
cases, find the asymptotic behavior of the solution x(t), i.e., determine lim

t→∞
x(t).

Problem 2. [A simple bifurcation diagram]

Consider the one-parameter family of ODEs

x′ = fµ(x) := x(x− µ) . (2)

(a) Determine all the fixed points of the ODE (2).

(b) Determine the stability of the fixed points of the ODE (2) for µ < 0. Sketch the graph
of f in the phase plane in this case.
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(c) Determine the stability of the fixed points of the ODE (2) for µ > 0. Sketch the graph
of f in the phase plane in this case.

(d) Plot the bifurcation diagram of the ODE (2), i.e., the position of the fixed points as
functions of µ. Indicate the attracting fixed point with a solid line and the repelling
fixed point with a dashed line.

Problem 3. [Saddle-node (tangent, blue sky) bifurcation in a 1-parameter family]

Consider the one-parameter family of ODEs

x′ = fµ(x) := tan x− 2x− µ , (3)

where µ is a parameter, and the solution x(t) can take only positive values. Your goal in
this problem is to find the value µc of the parameter µ such that for µ < µc the ODE has
no fixed points, while for µ > µc the ODE has two fixed points of opposite stability. Please
follow the steps below.

(a) Rewrite the function fµ(x) from (3) as a difference of the functions φ(x) = tanx and
ψµ(x) = 2x+ µ.

(b) The graph below shows the graphs of φ(x) and ψµ(x) for three different values of µ.
At the critical value µc of the parameter µ above which the ODE has fixed points, the

0.2 0.4 0.6 0.8 1.0 1.2

1

2

3

graphs of φ(x) and ψµ(x) are tangent to each other. Write the system of two equations
for the unknowns µc and the value x∗c of x for which these two graphs are tangent.
Write explicitly what the meaning of each of these two equations is.

(c) Solve the two equations derived in part (b) to find the values of µc and x∗c.
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(d) Expand the function fµ(x) (considered as a function of two independent variables, µ
and x), in a Taylor series about the point (µc, x

∗
c). Since the dependence of fµ(x) on µ

is very simple, you will not need to use the formula for Taylor series for a function of
two variables – it will be enough to use the Taylor expansion of the function tanx about
an appropriately chosen point. For your convenience, here are the Taylor expansions
of tan x about 0, π
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(e) Take the lowest-order terms that contain µ and x in the Taylor expansion you obtained
in part (d), and use them to find an approximate expression for the fixed points as
functions of the difference (µ− µc), for µ > µc. You will obtain that

x∗1,2 ≈
π

4
±
√

1
2
(µ− µc) ;

I want to see your detailed calculations.

(f) For µ > µc, determine which of the fixed points x∗1 and x∗2 is attracting and which one
is repelling. You may use a graph or a calculation (using the graph is easier).

(g) Sketch the bifurcation diagram for the 1-parameter family of ODEs (3), near the point
(x∗c, µc).

Problem 4. [Bifurcation in a logistic equation with linear harvesting]

Consider a population X(T ) that changes according to the logistic equation and in addition is
subjected to a linear harvesting, i.e., in each time interval, a part of the population is removed
by harvesting, and the harvesting is assumed to be a linear function of the population at
that moment. If R is the reproduction rate of the population, K is the carrying capacity,
and A and B are parameters that define the harvesting, the ordinary differential equation
governing the evolution of the population is

dX

dT
= RX

(
1− X

K

)
− (A+BX) . (4)

(a) It looks like the equation (4) has four parameters, but in fact two of them can be
eliminated by a change of variables. Change the independent variable T and the
dependent variable X to the new “time” t and “population” x by

t = RT , x =
X

K
,
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and show that the four-parameter family (4) becomes the two-parameter family

dx

dt
= x(1− x)− (a+ bx) . (5)

Express the new parameters, a and b, in therms of the old parameters R, K, A, and B.

(b) Rewrite the condition x(1−x)− (a+ bx) = 0 for a FP of (5) in the form f(x) = ga,b(x)
with f(x) = x(1−x) and ga,b(x) = a+bx. Plot the graphs of f(x) and ga,b(x) together,
for three cases: when (5) has no FP, when (5) has exactly one FP, and when (5) has
two FPs.

(c) Write down the conditions for the equation (5) to have exactly one FP. Solve them to
obtain a relation between the parameters a and b.

Hint: Recall that the graphs of f(x) and ga,b(x) must “touch” at a point, which gives
you two conditions.

(d) Plot the relation obtained in part (c) in the (a, b) plane, and indicate how many FPs
of (5) are there in each region in your plot.
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