MATH 5463 Homework 2 Due Thu, Feb 12

Problems 28, 31, 37 from Section 3.5 of the book.
Hint to Problem 28(a): Use Proposition 3.13(a).

Additional problem 1. Let (z,y) and (r,6) be the Cartesian and the polar coordinates
in the plane R?, respectively, and let 0 be the origin, (z,y) = (0,0). For n € N define the
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and the sets D, = {(z,y) € R? : r € [a,,b,)}. Each D, is an annulus (plural: annuli), i.e.,
the area between two concentric circles: D,, = B(b,,0)\ B(a,, 0). Note that D,, are disjoint.

Define the function f : R? — R as follows:

f,y) => xp.(z,y)
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i.e., f(z,y)is 1 if (z,y) belongs to some annulus D,, and 0 otherwise. Note that f(0) = 0.

(a) Is the function f continuous at 07

(b) Show that the Lebesgue measure (i.e., the area) of D,, is smaller than
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(c) Let (x,y) € Dy, i.e., 7 € [an,b,). Prove that the average (A,f)(0) of f over the ball

C
B(r,0) decreases with n as — for some constant C' > 0.
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(d) Let (z,y) be a point in the area between D,, and D, 1, i.e, let the distance from (z,y)
to 0 be r € [by11,a,). Give an upper bound on the average (A, f)(0) of f over the ball
B(r,0) in terms of n similarly to the bound in part (c).

(e) Based on the bounds in parts (c) and (d), what can you conclude about the behavior of
the averages (A, f)(0) as r — 07 How about the Hardy-Littlewood maximal function
(Hf)(0)? Is the point 0 in the Lebesgue set of f?
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Food for thought. Problems 27, 29 from Section 3.5 of the book.

Food for thought. Read Examples 1, 2, 14, 15, 16, 17 from Chapter 8 of Counterexamples
in Analysis by Gelbaum and Olmsted, and think about the properties of the Cantor function
and the measure associated with it.



