MATH 4073 Homework 3 Due Fri, 09/17/10

Problem 1. Consider the equation
flz)=x—cosz=0. (1)

(a) Prove that the equation (1) has a solution in the interval [0, 7]. Please specify which
theorem you used to come to this conclusion.

(b) Prove that the solution of (1) in the interval [0, 7] is unique.

(c) Use the Matlab code bisection.m (available at the class web-site, together with in-
structions how to run it) to find the root of (1) in [0, 5]. Use tolerance 10~"* and run
the code verbosely, so that you can see the results at each step. Please attached your
printout.

(d) If E, is the error in the nth step of the bisection method, then one can write £, = O(8,)
for some (simple) sequence {f3,}. What is 3, for the bisection method? Explain why
theoretically, and then from your numerical results in part (c).

Problem 2. Consider the function g(z) = —23+62*—112+8. The Mathematica command

Plot[{ - x"3 + 6%x"2 - 11*x + 8, xJ}, {x,1.0,3.0}]

would display the graphs of ¢ and the diagonal y = x on for z in the interval [1, 3] (there is
no need to attach a printout).

(a) Show (by hand) that = = 2 is a fixed point of the function g.

(b) Compute the values of g(2) and g(2), and check that 3 < g(2) < g(3) < 2. What

2
can you say about g([%, 2]) (i.e., about the interval of values that g(z) takes when

 traverses the whole interval [2,2])? What can you conclude from this about the

existence of a fixed point of g in the interval [2, 3]?7 Which theorem have you used?

(c) Explain why you cannot apply Theorem 2.2(b) to show that the fixed point in the

interval [3, 3] is unique.

(d) Since you could not use Theorem 2.2(b) to show the uniqueness of the fixed point = = 2
of the function g, try something else. Define the function f(z) := g(x) — z. Show that
f is strictly decreasing everywhere (even at x = 2), and use this fact to prove that f
cannot have more than one zero.

Hint: Show that the first derivative of f can be written as —3(z — 2)%.



(e) Use the Matlab program fixedpoint.m (available at the class web-site) fo find the
fixed point of ¢ with tolerances tol = 1072, 1073, 10~%, 107°, and 1079, with initial
value pg = 1.5. To see the number of iterations the code will perform, set the variable
verbose to be equal to 1. Make sure that the parameter nmax that you pass to the
program (the maximum number of iterations allowed) is large enough. To see more
digits of the results, type format long. The stopping criterion this program uses is
|pn — Pn—1] < tol. The Matlab command

fixedpoint(inline(’-x"3+6%x"2-11*x+8’), 1.5, 1le-2, 100000, 1)

produces the value given in the table below, after 9 iterations. Display your results in
a table:

Desired tolerance Value obtained Number of iterations
1072 1.800656708346558 9

Look at the computed values of the fixed point. Do they look correct within the desired
tolerance?

Remark: To get help about a particular Matlab command, say, about inline, type
help inline in Matlab.

(f) In your opinion, why did the program need such a large number of iterations before the
stopping criterion was met and the program stopped? (And recall that the precision
obtained was far from the desired tolerance).

Hint: Look at Corollary 2.4 (page 59). Why doesn’t it work in our problem?

Problem 3. Consider the one-parameter family of functions

ga(x) = azx(l — x) . (2)
Here the real number a is a parameter; in this problem we will assume that a > 1.

(a) Find all fixed points of the recursion relation p, = g,(pn—1). One of them does not
depend on a, and is not very interesting. Show that if a > 1, the other fixed point is
strictly positive; let p stand for this fixed point.

(b) In this and the next several parts of the problem you will study the behavior of the
iterates of g,. For this purpose you may use the following Mathematica code:



p=0.2;
a = 2.8;
glx_] = a * x *x (1-x);
For[ i =1, 1 <= 200, i++,
{p=glpl,
Print[ i, " ", pl,
}

]

For this and the following parts of this problem, please do NOT attach the printouts,
just describe what you observe!

Run this code with a = 2.8 (and py = 0.2). Do the iterates p, tend to a limit? What
is the numerical value of this limit? Compare it with your theoretical prediction from

part (a).

Now run the code with a = 3.3 (again with py = 0.2). Do the iterates tend to a limit?
Look closely at the last iterates (with n ~ 200) — what do you observe?

Run the code with a = 3.5 (again with py = 0.2). Again, look closely at the last
iterates (hint: look at pigs and pogo).

Run the code with a = 3.55 (again with pg = 0.2). Again, describe the asymptotic
behavior of the sequence {p,}52, and describe what you see (look at pig2 and pago).

It turns out that, if the parameter a keeps growing, at some values of a the asymptotic
behavior of the iterates of g, changes abruptly — the terminology is that at these values g,
undergoes period-doubling bifurcations. The discovery in mid-1970s of some striking proper-
ties of this infinite sequence of bifurcations by Mitchell Feigenbaum (a physicist, back then
at the Los Alamos National Laboratory) led to a rapid development of the modern Theory
of Dynamical Systems (which studies the asymptotic behavior of high iterates of maps).
A famous early article on simple ecological models that exhibit interesting phenomena is
“Simple mathematical models with very complicated dynamics” by Robert May (published
in Nature 261 (1976), 459-467), which is attached to my e-mail with this homework. It is a
pleasure to read — take a look at it when you have time.



