
MATH 4093/5093 Homework 3 Due Fri, 2/18/2011

Problem 1. Consider the function f(x) = 1√
4−x (well defined for any x < 4). Let P2 be

its second-degree Taylor polynomial (where f is expanded around x0 = 0), and R2 be the
corresponding remainder, so that f(x) = P2(x) +R2(x) (see page 25 of the book).

(a) Write explicitly the polynomial P2(x).

(b) Write explicitly R2(x). Remember that, in the notations of the book, ξ(x) is an
unknown number between x0 and x.

(c) If we want to compute the value P2(x) instead of f(x) for some particular value of
x, we need to know how large the (absolute) error, |f(x) − P2(x)| = |R2(x)|, can be.
Use the expression for R2(x) to compute the rigorous upper bound on the error in
replacing f(0.9) = 1√

3.1
by P2(0.9). In such a computation, you will have to take the

worst possible case, i.e., the upper bound on the error is

max
ξ
|Rn| = max

ξ

∣∣f (n+1)(ξ)
∣∣

(n+ 1)!
|x− x0|n+1 ,

where ξ is allowed to be anywhere between x0 and x. The value of x in this computation
is fixed (it is equal to 0.9), and the maximum is taken only over ξ.

(d) Compute the exact value f(0.9), the approximate value P2(0.9), and the numerical
value of the true error, |f(0.9) − P2(0.9)|. Compare it with the theoretical upper
bound on the error found in part (c). Discuss your findings.

(e) Compute the value of the relative error in replacing f(0.9) by P2(0.9).

(f) Now assume that we want to replace the exact value f(x) with the approximate value
P2(x), where x is allowed to be in the interval [0, 0.9]. Find the rigorous upper bound
on |f(x)− P2(x)| if x is allowed to vary anywhere in the interval [0, 0.9].

Remark: Here you have to find max
x∈[0,0.9]

|R2(x)| – to find the exact upper bound, in

principle you would have to differentiate ξ(x) with respect to x. However, since you do
not know ξ(x), treat x and ξ as independent variables and take the worst possible case:
max
x∈[0,0.9]

max
ξ∈[0,0.9]

|R2(x)|. Clearly, your rigorous upper bound may be loose, but that’s the

best you can do.

Problem 2. Gauss-Jordan elimination is an alternative to the Gaussian elimination followed
by back substitution. The Gauss-Jordan elimination replaces the elements both above and
below the pivot with zeros by using ERO3 until the coefficient part of the augmented matrix
becomes diagonal, and then makes this diagonal matrix equal to the unit matrix by using

1



ERO2. After this procedure the solution x of the system Ax = b is equal to the vector that
is in the right-hand side of the augmented matrix. This is illustrated in the example below,
whose exact solution is x = (1 2 3)T ; the pivot in each pass is written in angular brackets
〈 〉. We called the last step in Gauss-Jordan elimination “normalization”. 〈2〉 3 −2 2

3 5 0 13
1 2 1 8

 pass 1−→

 2 3 −2 2
0 〈1

2
〉 3 10

0 1
2

2 7

 pass 2−→

 2 0 −20 −58
0 1

2
3 10

0 0 〈−1〉 −3


pass 3−→

 2 0 0 2
0 1

2
0 1

0 0 −1 −3

 normalization−→

 1 0 0 1
0 1 0 2
0 0 1 3

 .

Gauss-Jordan elimination can be used for inverting an n× n-matrix A as follows. Write the
n×2n “augmented matrix” (A|I), where I is the n×n unit matrix. Then perform elementary
row operations ERO2 and ERO3 (but not ERO1!) on the rows of this augmented matrix
by following the Gauss-Jordan strategy until the matrix becomes of the form (I|B). Then
the matrix B is the inverse of A. Here is an example of such an inversion: 〈2〉 3 −2 1 0 0

3 5 0 0 1 0
1 2 1 0 0 1

 pass 1−→

 2 3 −2 1 0 0
0 〈1

2
〉 3 −3

2
1 0

0 1
2

2 −1
2

0 1

 pass 2−→

 2 0 −20 10 −6 0
0 1

2
3 −3

2
1 0

0 0 〈−1〉 1 −1 1


pass 3−→

 2 0 0 −10 14 −20
0 1

2
0 3

2
−2 3

0 0 −1 1 −1 1

 normaliz.−→

 1 0 0 −5 7 −10
0 1 0 3 −4 6
0 0 1 −1 1 −1

 .

In this problem you will count the number of operations needed to invert a matrix by Gauss-
Jordan elimination as explained above. Always assume that nothing goes wrong (i.e., assume
that A is invertible and that in all divisions the denominator is not zero). Also, keep in mind
that the rows of the augmented matrix are never interchanged (i.e., ERO1 is forbidden).

(a) Show that if one naively applies Gauss-Jordan elimination without taking into account
the structure of the identity matrix in the initial form (A|I) of the augmented matrix,
then the computation of A−1 requires 3n3 − 2n2 arithmetic operations. By an oper-
ation we mean addition, subtraction, multiplication, or division. The computation of
the element m = −arow,pass/apass,pass as in the pseudocode on page 155 of the book
is counted as one operation. Setting an element to be equal to zero (as in the line
arow,pass = 0 of the pseudocode on page 155) is not counted as an operation.

Please write your calculations legibly! An unclear calculation will be considered wrong!

Hint: On page 156 of the book the number of operations in the Gauss-Jordan elimi-

2



nation to solve the linear system Ax = b is counted, and the result is

n−1∑
p=1

n∑
r=p+1

(
1 +

n+1∑
c=p+1

2

)
+

n∑
p=2

p−1∑
r=1

(
1 +

n+1∑
c=p+1

2

)
+ n

=
n−1∑
p=1

n∑
r=p+1

(3 + 2n− 2p) +
n∑
p=2

p−1∑
r=1

(3 + 2n− 2p) + n

=
n−1∑
p=1

(n− p) (3 + 2n− 2p) +
n∑
p=2

(p− 1) (3 + 2n− 2p) + n

=
n−1∑
p=1

[
2p2 − (4n+ 3)p+ n(2n+ 3)

]
+

n∑
p=2

[
−2p2 + (2n+ 5)p− (2n+ 3)

]
+ n

= n3 + n2 − n ,

where in the last part the following facts were used:
∑k

p=1 p = 1
2
k(k + 1),

∑k
p=1 p

2 =
1
6
k(k + 1)(2k + 1). This calculation should be very helpful for you – the modifications

needed to solve part (a) are minor. But you have to be very careful when writing the
very first expression (the one with the triple sums).

(b) Only for the students taking the class as MATH 5093!

Show that if one takes into account the structure of the identity matrix in (A|I) (e.g.,
does not multiply by 1 and does add/subtract 0), then the computation of A−1 by
using Gauss-Jordan elimination can be reduced to 2n3 − 2n2 + n operations.

Problem 3. The MATLAB code nikola_petrov_gauss_elim.m (available at the class
web-site) solves the linear system Ax = b by Gaussian elimination and back substitution,
without any pivoting. To see how it works, run it as follows:

A = [ 3 2 -4 ; -4 5 -1 ; 2 -3 5 ]

b = [ -5 ; 3 ; 11 ]

x = nikola_petrov_gauss_elim(A,b)

This will compute the solution x = (1 2 3)T of the linear system, and the accuracy will be
excellent. Try also

A = [ 3 2 -4 ; 2 -3 5 ; -4 5 -1 ]

b = [ -5 ; 11 ; 3 ]

x = nikola_petrov_gauss_elim(A,b)

which is the first system, but with the equations are written in a different order (in this
case, it is clear from the output that the program does not do interchange the rows of the
augmented matrix since pivoting is not used).

In the case

3



A = [ 1 2 3 ; 4 5 6 ; 7 8 9 ]

b = [ -5 ; 3 ; 11 ]

x = nikola_petrov_gauss_elim(A,b)

think about what went wrong (hint: what is detA?). This is just for you to see how the
code works, there is no need to attach anything in your homework about it.

Below is a brief explanation how the code nikola_petrov_gauss_elim.m works.

Line 1 is the standard first line for a MATLAB function, and lines 3–17 are the comments about the function
(what it does, how to call the function, what are the inputs and outputs, etc.). To display the results more
clearly, on line 19 we request that MATLAB prints the results in “long e” format.

On line 20, the program finds the number of rows and columns of the coefficient matrix A, and on lines
21–24 checks if A is a square matrix (if not, the program outputs an error message and exits). Let A be an
n× n matrix; in the notations of the MATLAB code, this means that nrow = ncol = n. Similarly, on lines
25–29 we check if b is a column vector of the appropriate size (i.e., a matrix of size n × 1); to do this, we
compute the variable nb to be the row vector (n, 1) (on line 25), and then check if n is equal to the size of
A and if b is a row vector (in MATLAB the vertical bar, |, is the logical or operation).

Gaussian elimination starts on line 35. On line 36 we check if the element aii is equal to 0 – if it is, we
look for a nonzero element below it, i.e., among ai+1,i, ai+2,i, . . ., an,i; the array of these elements of A is
written in MATLAB as A(i+1:nrow,i) (the colon operator gives the range in which the indices can vary
– in this case the first index varies from i+1 to nrow, while the second index is always i). This search for
a nonzero element below aii is done with the MATLAB function find, which locates all nonzero elements
of an array and returns the indices of those elements in a vector; if the array contains no nonzero elements,
then find returns an empty array (for more information on the MATLAB commands find and isempty,
look them up in the index of Overman’s MATLAB Overview). If aii and all elements below it are zero, this
means that the matrix A is singular (why?), and the program outputs an error message and stops. If the
first nonzero element below aii is at,i, we swap rows i and t of the augmented matrix (the swapping is done
on lines 42–44). After we have performed the swapping (if needed), we make all elements below aii equal to
zero in the standard way (lines 46–51). On line 52, the matrix A is printed on the screen, just to monitor
how the code works (you have to leave this line in your codes, so that the grader can see how your codes
work!).

On line 63 we use the command zeros to define the vector x to be the column vector of length nrow

with zero entries; at the end this vector will contain the solution of the linear system. On lines 64–67

we perform the back substitution in the most straightforward way. The command .* is not the standard

matrix multiplication, but an elementwise multiplication. If C and D are matrices of the same dimen-

sion, then E = C .* D has elements E(i,j)=C(i,j)D(i,j) (no summation!); similarly, F = C ./ D has

elements F(i,j)=C(i,j)/D(i,j) (again, no summation). The prime means the transposed matrix (on

line 66, x(i+1:nrow) is a column vector of length nrow-i, while x(i+1:nrow)’ is a row vector of the

same length); A(i,i+1:nrow) is a row vector of length nrow-i, so that the elementwise multiplication

A(i, i+1:nrow) .* x(i+1:nrow)’ is well-defined.

(a) Run the following commands:

A = [ 1 2 3 ; 2 4-1e-12 7 ; 1/5 -3/7 2/5 ]

xexact = [ 1 ; 2 ; 3 ]

b = A * xexact

x = nikola_petrov_gauss_elim(A,b)

4



norm( x - xexact, 1 )

norm( x - xexact, inf )

norm( x - xexact )

Here you are solving the linear system Ax = b, where A =

 1 2 3
2 4− 10−12 7
1
5

−3
7

2
5

,

b = Axexact, and xexact = (1 2 3)T . After that you are comparing the exact solution
xexact with the approximate solution x obtained without using pivoting. The MATLAB
command norm computes the norm of a vector: if y = (y1 y2 . . . yn)T , then

norm(y, 1) returns ‖y‖1 :=
n∑
i=1

|yi| ;

norm(y, inf) returns ‖y‖∞ := max
1≤i≤n

|yi| ;

norm(y, 2) returns ‖y‖2 :=

√√√√ n∑
i=1

|yi|2 ;

norm(y) returns the same as norm(y, 2) .

Write down the approximate solution x (with all digits MATLAB gives you), as well
as the 1-, infinity-, and 2-norms of the difference x−xexact (when you write the norms
of the difference, you may write only 3-4 digits, but do not forget the power of 10).

(b) Write a MATLAB code called yourfirstname_yourfamilyname_gauss_elim_1.m that
performs Gaussian elimination with partial pivoting, followed by back substitution.
The partial pivoting in your code must be done without using a row vector, i.e., by
directly swapping the rows of the augmented matrix, if needed (as in Example 3.4 on
page 162 of the book). You do this by appropriately modifying the part of the code
nikola_petrov_gauss_elim.m that performs Gaussian elimination. It will be enough
to replace lines 36–45 of nikola_petrov_gauss_elim.m with appropriate new lines.
Leave the printing of the matrix A on line 52 of nikola_petrov_gauss_elim.m for the
grader to see how your code works. Attach a printout of your MATLAB code to your
homework, and put your code in the Dropbox of D2L (learn.ou.edu). Run it as in
part (a) and write your results. What are the norms of the error in this case?

(c) Write a MATLAB code yourfirstname_yourfamilyname_gauss_elim_2.m that per-
forms Gaussian elimination with partial pivoting followed by back substitution. The
partial pivoting in your new code must be done by using a row vector, as explained on
pages 163–164 of the book. Attach a printout of your MATLAB code to your home-
work, and put your code in the Dropbox of D2L. Run it as in part (a) and write your
results. What are the norms of the error in this case?

5


