
MATH 4163 Homework 3 Due Thu, Sep 13, 2012

Problem 1. In all parts of the problem below, you can use without deriving the following
solutions of the heat equation ut(x, t) = α2uxx(x, t), x ∈ [0, L], t ≥ 0, with appropriate
boundary conditions; the first expression is for zero temperature at both boundaries (homo-
geneous Dirichlet BCs, u(0, t) = 0, u(L, t) = 0), and the second is for zero heat flux at both
boundaries (homogeneous Neumann BCs, ux(0, t) = 0, ux(L, t) = 0):

u(x, t) =
∞∑
n=1

Bn exp

{
−
(αnπ
L

)2
t

}
sin

nπx

L
,

u(x, t) =
A0

2
+
∞∑
n=1

An exp

{
−
(αnπ
L

)2
t

}
cos

nπx

L
.

(a) Solve the Dirichlet boundary value problem (BVP) below to find the temperature
u(x, t).

ut = 9uxx , x ∈ [0, π] , t ≥ 0 ,

u(0, t) = 0 , u(π, t) = 0 ,

u(x, 0) = 4 sin 2x+ 7 sin 5x .

In the expression for u(x, t) take the limit t→∞ to find the asymptotic temperature,
u∞(x) := lim

t→∞
u(x, t). Explain why the expression you obtained for u∞(x) is physically

obvious.

(b) Use the hint below to solve the following Dirichlet BVP:

ut = uxx , x ∈ [0, π] , t ≥ 0 ,

u(0, t) = 0 , u(π, t) = 0 ,

u(x, 0) = 4 sin 4x cos 2x .

Hint: By using that cos(α±β) = cosα cos β∓ sinα sin β, one can derive the relations

cosα cos β =
1

2
[cos(α− β) + cos(α + β)] , sinα sin β =

1

2
[cos(α− β)− cos(α + β)] .

Similarly, from the identity sin(α ± β) = sinα cos β ± cosα sin β, one can derive an
expression for the product sinα cos β in terms of sines and/or cosines of sums and
differences of α and β:

sinα cos β =
1

2
[sin(α + β) + sin(α− β)]

(you do not need to write the derivation of this, but it is worth to think how one
derives it). Use this expression to replace the product 4 sin 4x cos 2x in the initial
condition by a sum of trigonometric functions – this will make the problem very easy
to solve (similar to what you did in part (a)).
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(c) Solve the Neumann BVP below, find the asymptotic temperature, u∞(x) := lim
t→∞

u(x, t),

and explain why the expression you obtained for u∞(x) is physically obvious.

ut = 9uxx , x ∈ [0, 5] , t ≥ 0 ,

ux(0, t) = 0 , ux(5, t) = 0 ,

u(x, 0) = 7 + 6 cos 2πx .

(d) Solve the Neumann BVP below.

ut = 9uxx , x ∈ [0, 2] , t ≥ 0 ,

ux(0, t) = 0 , ux(2, t) = 0 ,

u(x, 0) = f(x) :=

{
x for x ∈ [0, 1] ,

2− x for x ∈ [1, 2] .

You may use either the sine or the cosine Fourier expansion (you choose which one)
of the function f from the initial condition, given below (you do not need to derive
them):

f(x) =
8

π2

(
sin

πx

2
− 1

32
sin

3πx

2
+

1

52
sin

5πx

2
− 1

72
sin

7πx

2
+ · · ·

)
= 1− 16

π2

(
1

22
cos πx+

1

62
cos 3πx+

1

102
cos 5πx+

1

142
cos 7πx+ · · ·

)
.

Problem 2. Consider the problem about the stationary temperature distribution in the
rectangle x ∈ [0, a], y ∈ [0, b] (which can be symbolically written as (x, y) ∈ [0, a]× [0, b]) if
there are no sources of heat in the rectangle, hence the temperature u(x, y) satisfies Laplace’s
equation ∆u(x, y) = 0. The temperature at the sides of the rectangle is maintained as follows:

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0, b]

u(x, 0) = sin
3πx

a
, u(x, b) = 5 sin

7πx

a
for x ∈ [0, a] .

(a) Solve the BVP

∆u(x, y) = 0 , (x, y) ∈ [0, a]× [0, b]

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0, b]

u(x, 0) = 0 , u(x, b) = 5 sin
7πx

a
for x ∈ [0, a] .

Recall that one looks for a solution of this problem in the form

u(x, y) =
∞∑
n=1

(
Ane

nπy
a +Bne−

nπy
a

)
sin

nπx

a
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or, equivalently, in the form

u(x, y) =
∞∑
n=1

(
Cn cosh

nπy

a
+Dn sinh

nπy

a

)
sin

nπx

a
.

(b) Use the hint below to solve the BVP

∆u(x, y) = 0 , (x, y) ∈ [0, a]× [0, b]

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0, b]

u(x, 0) = sin
3πx

a
, u(x, b) = 0 for x ∈ [0, a] .

Hint: Let Yn(y) stand for the functions in the expansion

u(x, y) =
∞∑
n=1

Yn(y)Xn(x) ,

where because of the homogeneous boundary conditions at x = 0 and x = a the
functions Xn(x) are given by Xn(x) = sin nπx

a
. Then the general solution of the ODE

for Yn(y) is

Yn(y) = Cn cosh
nπy

a
+Dn sinh

nπy

a
.

Show that the homogeneous boundary condition at y = b implies that

Yn(y) = En

(
sinh

nπb

a
cosh

nπy

a
− cosh

nπb

a
sinh

nπy

a

)
= En sinh

nπ(b− y)

a

(where En are constants arbitrary at the moment); here we have used the fact that
hyperbolic sine satisfies

sinh(α± β) = sinhα cosh β ± coshα sinh β .

Now impose the remaining boundary condition to find the constants En (of which only
one will be non-zero).

(c) Since the equation ∆u = 0 is linear and homogeneous (i.e., with a zero right-hand
side), the principle of superposition holds similarly to the case of ordinary differential
equations. Using this fact, use your results from parts (a) and (b) to write down the
solution of the BVP

∆u(x, y) = 0 , (x, y) ∈ [0, a]× [0, b]

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0, b]

u(x, 0) = sin
3πx

a
, u(x, b) = 5 sin

7πx

a
for x ∈ [0, a] .
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Problem 3. From the partial differential equation

∂u

∂t
=
α2

r

∂

∂r

(
r
∂u

∂r

)
for the function u(r, t) (where α is a positive constant), derive the ordinary differential
equations that are implied by the method of separation of variables. In other words, set
u(r, t) = R(r)T (t) and derive ordinary differential equations for the functions R and T ;
do not forget that there should be a constant coming from the separation of variables (we
denoted it µ in class). Do not attempt to solve the equations you obtain.
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