
MATH 5463 Homework 3 Due Thu, Feb 19

Problems 34, 35, 42(modified–see below) from Section 3.5 of the book.

Hint to Problem 34: Let Ω = {(x, y) : a ≤ x ≤ y ≤ b}, and compute (µF × µG)(Ω) in two
ways, as in the proof of Theorem 3.36, to show that∫

[a,b]

F (x) dG(x) +

∫
[a,b]

G(x−) dF (x) = F (b)G(b)− F (a−)G(a−) .

Then, swap the places of F and G in this equality to obtain∫
[a,b]

G(x) dF (x) +

∫
[a,b]

F (x−) dG(x) = F (b)G(b)− F (a−)G(a−) ,

and derive the desired result from these two equalities.

Hint to Problem 35: You first have to prove that if F and G are in then FG ∈ AC([a, b]).
This is easy, recalling that F ∈ AC([a, b]) implies that F ∈ BV([a, b]), which, in turn,
implies that F is bounded (why?). Having established that FG ∈ AC([a, b]), you can use
the Fundamental Theorem of Calculus for Lebesgue Integrals to obtain the desired formula.

Additions, remarks and hints to Problem 42:

(a) Think geometrically. To prove that the desired inequality follows from the convexity
of F , you can prove the inequalities

F (t)− F (s)

t− s
≤ F (t′)− F (s)

t′ − s
≤ F (t′)− F (s′)

t′ − s′

(for s ≤ s′ < t′ and s < t ≤ t′). If you prove the left inequality, the right one is
completely analogous (draw a picture representing these inequalities). To prove the
left inequality, you can take the defining property of the convex functions in the form
F (λs + (1 − λ)t′) ≤ λF (s) + (1 − λ)F (t′), with λ = t′−s′

t′−s
∈ (0, 1) (why did I choose

this value of λ?). This same idea will help you prove the converse (i.e., that these
inequalities imply the convexity of the function).

(b) In this part prove only that the convexity of F implies the absolute continuity of F on
compact subintervals, as well as that F ′ is non-decreasing (wherever it is defined).

To show that convexity implies that F ′ is non-decreasing (wherever F ′ is defined),
think of s and t′ in part (a) as fixed values (s < t′), and take the limits t ↓ s and s′ ↑ t′
in the inequality from part (a) (if these limits exist).

(c) Again, think geometrically about the meaning of F (t)−F (t0)
t−t0

. What would β be if F was
differentiable at t0? (Keep in mind that the absolute continuity on compact subintervals
proved in part (a) implies that F is differentiable almost everywhere, so that thinking
about derivatives is not too unrealistic here.)
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(e) Let X = {a1, . . . , an} be a finite set, µ be a measure on X defined by µ({aj}) = 1
n

for each j ∈ {1, . . . , n} (so that µ(X) = 1, as it should), g(aj) = lnxj, where xj

(j ∈ {1, . . . , n}) are some positive numbers, and F : R → R be the (obviously convex)
exponential function: F (x) = ex. Apply the inequality from part (d) in this setting to
obtain the well-known ineqality between the arithmetic mean and the geometric mean
of n positive numbers,

(x1 · · ·xn)1/n ≤ x1 + · · ·+ xn

n
.

Additional problem 1. Show by example that, if r and s are two distinct numbers in
[1,∞), then Lr(R,B,m) * Ls(R,B,m) and Ls(R,B,m) * Lr(R,B,m).

Hint: Think of a simple example.

Additional problem 2. Let (X,M, µ) be a finite measure space (i.e., µ(X) <∞). Assume
that µ(X) = 1, i.e., µ is a probability measure (this is always possible to achieve for finite
measures). In this problem you will show that if 0 < r < s, then Ls(X,M, µ) ⊆ Lr(X,M, µ),
and this inclusion is strict (i.e, Ls(X,M, µ) 6= Lr(X,M, µ)).

(a) Recall the Jensen’s inequality from Problem 3.5/42(d):

F

(∫
g dµ

)
≤

∫
F ◦ g dµ ,

where µ is a probability measure, g : X → (a, b) is in L1(X,M, µ), and F : (a, b) → R
is a convex function. Let f be an arbitrary function in Ls(X,M, µ). Set g = |f |r
and F : R → R : x → |x|s/r; note that, since s

r
> 1, F is indeed a convex function.

Apply Jensen’s inequality to obtain that ‖f‖r ≤ ‖f‖s. What does this imply about
the spaces Ls(X,M, µ) and Lr(X,M, µ))?

(b) Let (X,M, µ) = ([0, 1],B[0,1],m[0,1]), where m[0,1] be the restriction of the Lebesgue
measure to B[0,1]. If 0 < r < s, find an example of a function f : [0, 1] → R that is in
Lr([0, 1],B[0,1],m[0,1]), but not in Ls([0, 1],B[0,1],m[0,1]).

(c) Finally, give an alternative derivation of the result that you already obtained in (a) by
using Hölder’s inequality, ‖φψ‖1 ≤ ‖φ‖p‖ψ‖q, where p and q are conjugate exponents:
p > 1, 1

p
+ 1

q
= 1.

Hint: Try setting φ = |f |r, p = s
r
> 1. What should you take for ψ? (In the choice of

ψ you will see that the requirement that µ be finite is crucial.)

Remark: It is not so surprising that we could use Hölder’s inequality to derive a result
that we previously derived by using Jensen’s inequality. In fact, Lemma 6.1, which
was the crucial ingredient in the proof of Hölder’s inequality follows directly from the
fact that the function x 7→ ex is convex (how?).
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