
MATH 5763 Homework 3 Due Fri, 2/18/11

Problem 1.

(a) Consider two urns A and B. Initially the urn A contains N black balls and the urn
B contains N white balls. At each step, one ball is selected at random from each urn
and the two balls interchange. Let Xn denote the number of white balls in the urn A
at time n. Determine the transition matrix P.

Remark: The elements p0j, pNj, and pij for 1 ≤ i ≤ N−1 should be treated separately.
One way to check your results is to verify that P is a stochastic matrix.

(b) Consider two urns A and B containing a total N balls together. At each time, a ball
is selected at random (all selections are equally likely) from among the totality of N
balls. Then an urn is selected at random: urn A is selected with probability p and urn
B is selected with probability 1− p. And the ball previous drawn is placed in this urn.
Let Xn denote the number of balls in A at time n. Determine the transition matrix P.

Problem 2. The newspaper is delivered every morning to Brandon’s house. Brandon reads
the newspaper at 8 a.m., and puts it on a pile after reading it. However, if the pile contains
5 newspapers after he puts the newspaper on it, he throws all the newspapers in the pile
(including the new one) in the recycle bin. Also, at 6 p.m. every evening, with probability 1

3
,

Brandon takes all the papers in the pile and puts them in the recycle bin. Model this by a
Markov chain and write the transition matrix.

Hint: Let Xn be the number of papers at 6:01 p.m. on day n.

Problem 3. Consider a Markov chain whose state space consists of five states: α, β, γ, δ, ε,
and whose transition matrix is the following:

α β γ δ ε

P =


1 0 0 0 0

0 0 1
2

1
6

1
3

1
4

1
2

1
4

0 0

0 0 0 1
3

2
3

0 0 0 1 0


α

β

γ

δ

ε

(a) Draw a diagram with arrows (where each arrow from state i to state j represents a
nonzero probability pij), and identify the transient and the recurrent states (do not do
any computations yet). You will find that two states are transient (denote the set of
transient states by D), and there will be two closed and irreducible sets of recurrent
states (one of them – call it C1 – will consist of two states, and the other will consist
of only one state – call this set C2).
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(b) Now relabel the states α, β, γ, δ, ε as 1, 2, 3, 4, 5, in such a way that the C1 = {1, 2},
C2 = 3, and the states 4 and 5 to be the transient states, i.e., D = {4, 5}. In C1, let
state 1 be the state with one-step probability for transition to itself equal to 1

3
; in D,

let state 4 be the state with nonzero one-step probability for transition to itself.

(c) Carefully write the one-step transition probability matrix P̃ with the relabeled states.
It should look like this:

P̃ =

 C1 0 0
0 C2 0
∗ ∗ T

 ,

where 0 are matrices (of appropriate size) with all entries equal to zero, while the stars
represent matrices that are generally not zero (but nothing more concrete can be said
about them in general).

Check that C1 and C2 are stochastic matrices, while T is not a stochastic matrix.

Problem 4. Let V be a d-dimensional linear space (e.g., Rd), and e1, e2, . . ., ed be a basis

in V ; in this basis every vector u ∈ V can be written as u =
d∑

i=1

ui ei. Let P : V → V be a

linear transformation (sometimes linear transformations are called “linear operators”). The
matrix P = (pij) of the linear transformation P in the basis e1, e2, . . ., ed is defined by

Pej =:
d∑

i=1

pij ei ,

i.e., pij = (Pej)i is the ith component of the vector Pej in the basis ei. If one changes the
basis from e1, e2, . . ., ed to ẽ1, ẽ2, . . ., ẽd, then the matrix of the linear transformation P
changes from P to P̃ = (p̃ij). Suppose that the “new” basis ẽi is expressed in terms of the
“old” basis ei as

ẽj =
d∑

i=1

cij ei ,

and the matrix C is defined by C = (cij). Clearly, the entries of C are the components
of the new basis vectors in the old basis – indeed, comparing the formula above with

ẽj =
d∑

i=1

(
ẽj
)
i
ei, we see that cij =

(
ẽj
)
i
. In other words, the jth column of the matrix

C is the vector ẽj (written in the old basis ei):

C = ( ẽ1 | ẽ2 | · · · | ẽd) .
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It is easy to see that

ej =
d∑

i=1

dij ẽi ,

where (dij) = C−1 is the inverse matrix of C. In the new basis the linear transformation P

has matrix P̃ = (p̃ij), where P̃ = C−1AC:

∑
m

p̃mj ẽm = Pẽj = P

(∑
i

cij ei

)
=
∑
i

cij Pei =
∑
i

dij
∑
k

pki ek

=
∑
i

cij
∑
k

pki
∑
m

dmk ẽm =
∑
m

(∑
i

∑
k

dmk pki cij

)
ẽm .

If the matrix P has d distinct real eigenvalues λj, and the corresponding eigenvectors are ẽj,

then in the basis ẽj, the matrix P̃ of the linear transformation P will be diagonal (with the
eigenvalues λj on the diagonal).

In this problem you will apply these techniques in order to find high powers of stochastic
matrices.

(a) Consider the stochastic matrix

P =


1
2

1
2

0
1
3

1
3

1
3

0 1
2

1
2


The eigenvalues of P are λ1 = 1, λ2 = 1

2
, and λ3 = −1

6
, and the corresponding

eigenvectors are

ẽ1 =

 1
1
1

 , ẽ2 =

 −1
0
1

 , ẽ3 =

 3
−4
3

 .

The matrix C and its inverse are

C =

 1 −1 3

1 0 −4

1 1 3

 , C−1 =
1

14

 4 6 4

−7 0 7

1 −2 1

 .

What is the matrix P̃ = C−1PC?

Remark: I used Mathematica to do some of the calculations. To enter the matrix

B =

(
1 2
3 4

)
in Mathematica, type B={{1,2},{3,4}} and then hold down the shift

key and press enter. To find its inverse of B, type Inverse[B] and again press press
enter while holding down the shift key.
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(b) Show that, if P̃ is an arbitrary square matrix, C is an invertible matrix of the same

size as P̃, and P = CP̃C−1, then Pn = CP̃nC−1 for any n ∈ N.

(c) Use your result of part (b) to compute Pn for any n ∈ N, where P is the stochastic
matrix from part (a).

(d) Let Xn be a discrete time, discrete state space Markov chain whose state space consists
of three states (labeled 1, 2, 3) and whose transition probabilities are given by the
stochastic matrix P from part (a), i.e., P(Xn+1 = j|Xn = i) = pij. Let a = (a1 a2 a3)
be the initial probability distribution, i.e., P(X0 = i) = ai. Find P(Xn = i) and
lim
n→∞

P(Xn = i).

Problem 5. A linear homogeneous recurrence relation of order d with constant coefficients
is an equation of the form

xn = b1xn−1 + b2xn−2 + · · ·+ bdxn−d , (1)

where the d coefficients b1, b2, . . ., bd are constants. Solving such relations is very similar
to solving linear homogeneous ordinary differential equations of order d with constant co-
efficients. Similarly to the case of differential equations, one talks about a general solution
of (1) (the general solution contains d arbitrary constants), and for the particular solution
of (1), which satisfies not only (1), but also initial conditions,

x0 = a0 , x1 = a1 , . . . , xd−1 = ad−1 . (2)

To find the general solution of (1), set xj = λj in the equation to obtain (after dividing by
λn−d) the equation

P (λ) = λd − b1λd−1 − b2λd−2 − · · · − bd = 0 ,

called the characteristic equation of (1) (the polynomial P is called the characteristic poly-
nomial of (1)). Find all roots λj of the characteristic equation.

If all the roots of the are real and distinct (i.e., the roots are λ1, . . . λd with λj ∈ R and
λi 6= λj for i 6= j), then the general solution of (1) has the form

xn = C1λ
n
1 + C2λ

n
2 + · · ·+ Cdλ

n
d ,

where C1, C2, . . ., Cd are arbitrary constants. To find the particular solutions that satisfies
both the relation (1) and the initial condition (2), one needs to express the constants C1,
C2, . . ., Cd through the initial conditions a0, a1, . . ., ad−1.

If λj ∈ R is a real root of the characteristic equation with multiplicity sj (i.e., if the charac-
teristic polynomial contains the factor (λ−λj)sj), then the corresponding term in the general
solution xn of the recurrence relation (1) is(

C
(j)
1 + C

(j)
2 n+ C

(j)
3 n2 + · · ·C(j)

sj
nsj−1

)
λnj ,
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where C
(j)
k are arbitrary constants. For example, if P (λ) = (λ − 5)λ2(λ + 7)3, then the

general solution of the corresponding recurrence relation is

xn = C15
n + C2 + C3n+ (C4 + C5n+ C6n

2)(−7)n

(after relabeling the arbitrary constants).

(a) The Fibonacci numbers Fn are defined by

F0 = 1 , F1 = 1 , Fn = Fn−1 + Fn−2 for n ≥ 2 .

First few FIbonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .. Find an explicit
formula for Fn.

(b) Let p ∈ (0, 1) be a constant. Find all functions that satisfy the relation

f(n) = (1− p)f(n− 1) + pf(n+ 1) .

You will have to consider the cases p 6= 1
2

and p = 1
2

separately.
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